

JAMAL MOHAMED COLLEGE (AUTONOMOUS)
Accredited (3rd Cycle) with ‘A’ Grade by NAAC

Affiliated to Bharathidasan University

TIRUCHIRAPPALLI – 620 020

DEPARTMENT OF COMPUTER SCIENCE

COMPUTER SYSTEM ARCHITECTURE

20MCA1CC2

Prepared By: Dr. T. Abdul Razak

Semester Code Course Title of the Course Hours Credits
Max.

Marks

Internal

Marks

External

Marks

I 20MCA1CC2 CORE – II

COMPUTER

SYSTEM

ARCHITECTURE

4 3 100 25 75

Course Outcomes:

On completion of the course, students will be able to

1. Understand the various types of number systems and binary codes

2. Apply Boolean laws and theorems to simplify and implement Boolean expressions

3. Design and analyze combinational circuits

4. Design and analyze sequential circuits

5. Understand the architecture and functionality of central processing unit

UNIT I 12 hours

Number Systems – Decimal, Binary, Octal and Hexadecimal Systems – Addition, Subtraction,

Multiplication and Division (whole numbers) – Conversion from one system to another – Binary

Codes – BCD codes – Weighted codes, Reflected code, Self-complementing codes – Alphanumeric

Codes – #Error Detection Codes#.

UNIT II 12 hours

Boolean Algebra – Boolean Laws and Theorems – De Morgan’s Theorems – Complement of a

Function - Duality – Logic Gates – Universal Logic – Boolean Expressions – Sum of Products –

Product of Sums – Simplification of Boolean Expressions – Algebraic Method – Karnaugh Map

Method (up to 4 Variables) – Implementation of Boolean Expressions using Gate Networks.

UNIT III 12 hours

Combinational Circuits – Multiplexers – Demultiplexers – Decoders – Encoders – Arithmetic

Building Blocks – Half and Full Adders – Half and Full Subtractors – Parallel adder – 2‘s

Complement Adder/Subtractor – #BCD Adder#.

UNIT IV 12 hours

Sequential Circuits – Flip Flops – RS, Clocked RS, D, JK, T and Master-Slave Flip Flops – Shift

Register – Counters – Asynchronous and Synchronous Counters – Mod n Counter - BCD Counter –

Ring Counter – Shift Counter.

UNIT V 12 hours

Central Processing Unit: General Register Organization – Stack Organization – Instruction Formats –

Addressing Modes – Data Transfer and Manipulation – Program Control - Status Bit Conditions,

Conditional Branch Instructions, Subroutine Call and Return, Program Interrupt, Types of Interrupts –

#Reduced Instruction Set Computer: CISC and RISC Characteristics#.

Text Books:

1. Donald P. Leach, Albert Paul Malvino and GoutamSaha, Digital Principles and Applications, Tata

McGraw Hill, Sixth Edition, 2007.

2. Morris Mano M, Computer System Architecture, Prentice Hall of India, Third Edition, 2008

1

UNIT-1

NUMBER SYSTEMS

The technique to represent and work with numbers is called number system.

Types of Number Systems:

1. Decimal system (0 – 9)

2. Binary system (0, 1)

3. Octal system (0 – 7)

4. Hexadecimal system (0 – 9, A – F)

Base or radix of a number system:

It is defined as the number of digits available in a number system.

Bases of the different number systems

Number

System
Available Digits Base / Radix

Decimal 0 – 9 10

Binary 0 & 1 2

Octal 0 – 7 8

Hexadecimal 0 – 9, A – F 16

Binary Number System

The number system having just these two digits 0 and 1 is called a binary number system. Each

binary digit is also called a bit. The base / radix of the binary system is 2. Binary number system is a

positional value system, where each digit has a value expressed in powers of 2, as shown below:

25 24 23 22 21 20

Octal Number System

Octal number system has eight digits – 0, 1, 2, 3, 4, 5, 6 and 7. The base / radix of the octal system is

8. Octal number system is also a positional value system where each digit has its value expressed in

powers of 8, as shown below:

85 84 83 82 81 80

Hexadecimal Number System

Hexadecimal number system has 16 digits – 0 to 9, A to F. The base / radix of the hexadecimal

system is 16. In hexadecimal number system, each digit has its value expressed in powers of 16, as

shown below:

165 164 163 162 161 160

2

ADDITION, SUBTRACTION, MULTIPLICATION & DIVISION OF BINARY, OCTAL &

HEXADECIMAL NUMBERS

Binary Addition:

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 10

Examples:

 1011 10101

 1001 + 11001 +

 -------- ---------

 10100 101110

 -------- ---------

Binary Subtraction:

Examples:

1011 10101

 1001 - 01011 -

 ------- ---------

 0010 01010

 ------- ---------

Binary Multiplication:

0 x 0 = 0, 0 x 1 = 0, 1 x 0 = 0, 1 x 1 = 1

Examples:

 10111

 101 x

10111

 00000

 10111

 1110011

Binary Division:

 101) 1 1 0 1 0 (101

 - 1 0 1

 1 1 0

 - 1 0 1

 0 0 1

 11001

 111 x

11001

 11001

 11001

 10101111

3

Octal Addition:

The following table will help you to handle octal addition.

Example:

4 5 6

 1 2 3 +

 6 0 1

Octal Subtraction:

Example:

4 5 6

 1 7 3 -

 2 6 3

Octal Multiplication:

Example:

4 4

 1 5 x

 2 6 4

 4 4

 7 2 4

4

Octal Division:

Example: (6573)8 / (16)8

First let us make a table for 16 and its multiples.

Decimal Octal

16*1 16 14

16*2 32 34

16*3 48 52

16*4 64 70

16*5 80 106

16*6 96 124

16) 6 5 7 3 (366.4

 5 2

 1 3 7

 1 2 4

 1 3 3

 1 2 4

 7 0

 7 0

 0 0

Hexadecimal Addition:

The following table will help you to handle hexadecimal addition.

5

Example:

 4 A 6

 1 B 3 +

 6 5 9

Hexadecimal Subtraction:

Example:

4 A 6

 1 B 3 -

 2 F 3

Hexadecimal Multiplication:

Example:

 C B

 A 2 x

 1 9 6

 7 E E

 8 0 7 6

Hexadecimal Division:

Example:

 A) B 8 4 F (1 2 6 E

 A

 1 8

 1 4

 4 4

 3 C

 8 F

 8 C

 3

6

CONVERSION FROM ONE NUMBER SYSTEM TO ANOTHER

The following number conversions are possible:

1. Decimal to Binary, Octal and Hexadecimal

2. Binary, Octal and Hexadecimal to Decimal

3. Octal to Binary and Binary to Octal

4. Hexadecimal to Binary and Binary to Hexadecimal

5. Octal to Hexadecimal and Hexadecimal to Octal

Decimal to Binary Conversion

1. First, we divide the integer and successive quotients by 2, till the quotient becomes zero.

Then, we write the remainders in the reverse order for getting the integer part of the binary

number.

2. Next, we multiply the fractional and successive fractions by 2. The carries are noted until the

result is 0 or when the required number of the equivalent digit is obtained. The fractional part

of the binary number is obtained by writing the carries in the normal sequence.

Example: (152.25)10 = (?)2

1. Divide the decimal number 152 and its successive quotients by base 2.

Operation Quotient Remainder

152/2 76 0 (LSB)

76/2 38 0

38/2 19 0

19/2 9 1

9/2 4 1

4/2 2 0

2/2 1 0

1/2 0 1(MSB)

Then, we write the remainders in the reverse order for getting the integer part of the binary number as

shown below:

(152)10=(10011000)2

2. Now, we multiply the fractional and successive fractions by 2

Operation Result Carry

0.25×2 0.50 0

0.50×2 0 1

7

The fractional part of the binary number is obtained by writing the carries in the normal sequence as

shown below:

(0.25)10=(.01)2

Answer : (152.25)10=(10011000.01)2

Decimal to Octal Conversion

1. First, we divide the integer and successive quotients by base 8, till the quotient becomes zero.

Then, we write the remainders in the reverse order for getting the integer part of the octal

number.

2. Next, we multiply the fractional and successive fractions by 8. The carries are noted until the

result is 0 or when the required number of the equivalent digit is obtained. The fractional part

of the octal number is obtained by writing the carries in the normal sequence.

Example: (152.25)10 = (?)8

1. Divide the decimal number 152 and its successive quotients by base 8.

Operation Quotient Remainder

152/8 19 0

19/8 2 3

2/8 0 2

(152)10=(230)8

2. Now, we multiply the fractional and successive fractions by 8

Operation Result Carry

0.25×8 0 2

(0.25)10=(.2)8

Answer : (152.25)10=(230.2)8

Decimal to hexadecimal conversion

1. First, we divide the integer and successive quotients by base 16, till the quotient becomes

zero. Then, we write the remainders in the reverse order for getting the integer part of the

hexadecimal number.

2. Next, we multiply the fractional and successive fractions by 16. The carries are noted until the

result is 0 or when the required number of the equivalent digit is obtained. The fractional part

of the hexadecimal number is obtained by writing the carries in the normal sequence.

Example: (152.25)10 = (?)16

1. Divide the decimal number 152 and its successive quotients by base 16.

Operation Quotient Remainder

152/16 9 8

9/16 0 9

 (152)10=(98)16

8

2. Now, we multiply the fractional and successive fractions by 16.

Operation Result Carry

0.25×16 0 4

(0.25)10=(4)16

Answer : (152.25)10=(230.2)8

Binary to Decimal Conversion

The process of converting binary to decimal is quite simple. The process starts from multiplying the

bits of binary number with its corresponding positional weights. And lastly, we add all those

products.

Example 1: (10110.001)2

We multiply each bit of the binary number 10110.001 with its respective positional weight, and then

we add the products of all the bits with its weight.

(10110.001)2=(1×24)+(0×23)+(1×22)+(1×21)+(0×20)+(0×2-1)+(0×2-2)+(1×2-3)

(10110.001)2=(1×16)+(0×8)+(1×4)+(1×2)+(0×1)+(0×1⁄2)+(0×1⁄4)+(1×1⁄8)

(10110.001)2=16+0+4+2+0+0+0+0.125

(10110.001)2=(22.125)10

The decimal equivalent of the binary number 10110.001 is 22.125

Octal to Decimal Conversion

The process of converting octal to decimal is carried out by multiplying the digits of the octal number

with its corresponding positional weights and then adding all the products.

Example: (152.25)8 = (?)10

We multiply each digit of the octal number 152.25 with its respective positional weight, and then add

the products.

(152.25)8=(1×82)+(5×81)+(2×80)+(2×8-1)+(5×8-2)

(152.25)8=64+40+2+(2×1⁄8)+(5×1⁄64)

(152.25)8=64+40+2+0.25+0.078125

(152.25)8=(106.328125)10

The decimal equivalent of the octal number 152.25 is 106.328125

Hexadecimal to Decimal Conversion

The process of converting hexadecimal to decimal is carried out by multiplying the digits of the

hexadecimal number with its corresponding positional weights and then adding all the products.

Example: (152A.25)16 = (?)10

9

We multiply each digit of the hexadecimal number 152A.25 with its respective positional weight, and

then add the products.

(152A.25)16=(1×163)+(5×162)+(2×161)+(A×160)+(2×16-1)+(5×16-2)

(152A.25)16=(1×4096)+(5×256)+(2×16)+(10×1)+(2×16-1)+(5×16-2)

(152A.25)16=4096+1280+32+10+(2×1⁄16)+(5×1⁄256)

(152A.25)16=5418+0.125+0.125

(152A.25)16=(5418.14453125)10

The decimal equivalent of the hexadecimal number 152A.25 is 5418.14453125.

Binary to Octal Conversion

Binary numbers can be converted into equivalent octal numbers by making groups of 3 bits on both

sides of the binary point and then replacing each group of 3 bits by its octal representation. If there

will be one or two bits left in a group of 3 bits, we add the required number of zeros on extreme

sides.

Example: (111110101011.0011)2

First, we make group of 3 bits on both sides of the binary point.

111 110 101 011.001 1

On the right side of the binary point, the last pair has only one bit. To make it a complete group of 3

bits, we add two 0’s on the extreme right.

111 110 101 011.001 100

Then, we write the octal digits corresponding to each group as shown below.

(111110101011.0011)2 = (7653.14)8

Binary to Hexadecimal Conversion

Binary numbers can be converted into equivalent hexadecimal numbers by making groups of 4 bits

on both sides of the binary point. If there will be one, two or three bits left in a group of 4 bits, we

add the required number of 0’s on extreme sides. Then replace each group of 4 bits by its

hexadecimal equivalent.

Example 1: (10110101011.0011)2

First, we make group of 4 bits on both sides of the binary point.

111 1010 1011.0011

On the left side of the binary point, the first group has only bits. To make it a complete pair of 4 bits,

add one zero on the extreme left.

0111 1010 1011.0011

10

Then, we write the hexadecimal digits, which correspond to each group as shown below:

(011110101011.0011)2 = (7AB.3)16

Octal to Binary Conversion

The process of converting octal to binary is the reverse process of binary to octal. The binary

equivalent of the octal number is obtained by converting each octal digit into 3-bit binary.

Example: (152.25)8 = (?)2

We write the 3-bit binary equivalent for each digit of the above given number as shown below:

(152.25)8=(001 101 010.010 101)2

The binary equivalent of the octal number 152.25 is 001101010.010101.

Hexadecimal to Binary Conversion

The process of converting hexadecimal to binary is the reverse process of binary to hexadecimal. The

binary equivalent of the octal number is obtained by converting each hexadecimal digit into 4-bit

binary.

Example: (152.A25)16 = (?)2

We write the 4-bit binary equivalent for each digit of the hexadecimal number as shown below:

(152A.25)8 = (0001 0101 1010.0010 0101)2

The binary equivalent of the octal number 152.25 is 000101011010.00100101.

Octal to hexadecimal conversion

1. Find the binary equivalent of the octal number by converting each octal digit into 3-bit binary

2. Convert the binary number into hexadecimal equivalent by grouping the binary number into

group of 4-bits on both sides of the binary point. If there will be one, two or three bits left in a

group of 4 bits, we add the required number of 0’s on extreme sides. Then replace each group

of 4 bits by its hexadecimal equivalent.

Example: (152.25)8 = (?)16

Covert each octal digit into 3-bit binary as shown below:

(152.25)8=(001101010.010101)2

Group the binary number into group of 4 bits on both sides of the binary point as shown below:

0 0110 1010 . 0101 01

On the left side of the binary point, the first group has only one digit, and on the right side, the group

has only two digits. To make them complete group of 4 bits, add 0’s on both extreme sides as shown

below:

0000 0110 1010 . 0101 0100

11

Write the hexadecimal digits for each group of 4 bits as shown below:

(0000 0110 1010 . 0101 0100)2 = (6A.54)16

The hexadecimal equivalent of the given octal number 152.25 is 6A.54

Hexadecimal to other Number Systems

Hexadecimal to Octal Conversion

1. Find the binary equivalent of the hexadecimal number by converting each octal digit into 4-

bit binary

2. Convert the binary number into octal equivalent by grouping the binary number into group of

3-bits on both sides of the binary point. If there will be one, two or three bits left in a group of

3 bits, we add the required number of 0’s on extreme sides. Then replace each group of 3 bits

by its octal equivalent.

Example: (152A.25)16 = (?)8

Covert each hexadecimal digit into 4-bit binary as shown below:

(152A.25)8=(0001 0101 0010 1010 . 0010 0101)2

Group the binary number into group of 3 bits on both sides of the binary point as shown below:

0 001 010 100 101 010 . 001 001 01

On the left side of the binary point, the first group has only one digit, and on the right side, the last

group has only two digits. To make them complete group of 3 bits, add 0’s on both extreme sides as

shown below:

000 001 010 100 101 010 . 001 001 010

Write the octal digits for each group of 3 bits as shown below:

(001 010 100 101 010 . 001 001 010)2 = (12452.112)8

The octal equivalent of the given hexadecimal number 152A.25 is 12452.112

12

COMPLEMENTS

Complements are used in digital computers to represent signed numbers and hence to simplify

subtraction operations. We have two categories of complements, namely 1’s and 2’s complements for

binary numbers and 9’s and 10’s complements for decimal numbers. These complements are

discussed below.

1’s Complement: The 1’s complement of a binary number is obtained by subtracting each bit of the

given number from 1. The 1’s complement is also obtained by changing all the 0’s to 1’s and all the

1’s to 0’s.

Examples: 1. The 1’s complement of the binary number 010011 is 101100.

 2. The 1’s complement of the binary number 110110 is 001001.

2’s Complement: The 2’s complement of a binary number is obtained by finding the 1’s

complement of the number and then adding a 1 to it.

 2’s complement = 1’s complement + 1

Examples: 1. The 2’s complement of the binary number 010011 is obtained by the following steps.

 1’s complement = 101100

 2’s complement = 101100 + 1 = 101101

 2. The 2’s complement of the binary number 110110 is obtained by the following steps.

 1’s complement = 001001

 2’s complement = 001001 + 1 = 001010

9’s Complement: The 9’s complement of a decimal number is obtained by subtracting each digit of

the given number from 9.

Examples: 1. The 9’s complement of the decimal number 3549 is 6450

 2. The 9’s complement of the decimal number 1287 is 8712

10’s Complement: The 10’s complement of a decimal number is obtained by finding the 9’s

complement of the number and then adding a 1 to it.

 10’s complement = 9’s complement + 1

Examples: 1. The 10’s complement of the binary number 3549 is obtained by the following steps.

 9’s complement = 6450

 10’s complement = 6450 + 1 = 6451

 2. The 10’s complement of the binary number 1287 is obtained by the following steps.

 9’s complement = 8712

 10’s complement = 8712 + 1 = 8713

13

BINARY CODES

The digital data is represented, stored and transmitted as group of binary bits. This group is also

called as binary code. The binary code is represented by the number as well as alphanumeric letter.

Advantages of Binary Codes

• Binary codes are suitable for the computer applications.

• Binary codes are suitable for the digital communications.

• Since only 0 & 1 are being used, implementation becomes easy.

Classification of Binary Codes

The codes are broadly categorized into following four categories.

• Weighted codes

• Non-weighted codes

• Self-complementing codes

• Binary Coded Decimal (BCD) codes

• Alphanumeric codes

• Error Detection Codes

Weighted Codes

Weighted binary codes are those binary codes which obey the positional weight principle. Each

position of the number represents a specific weight. Several systems of the codes are used to express

the decimal digits 0 through 9. In these codes each decimal digit is represented by a group of four

bits. Examples of weighted codes are 8421 code and 2421 code.

8421 Code:

The 8421 code is a weighted code in which each decimal digit 0 through 9 is represented by a 4-bit

binary word. Each bit has a weight 8, 4, 2, 1 from left to right. An 8421 code is a BCD code. For

example, the decimal number 24 is represented in 8421 code as 0010 0100.

2421 Code:

The 2421 code is a weighted code in which each decimal digit 0 through 9 is represented by a 4-bit

binary word. Each bit has a weight 2, 4, 2, 1 from left to right. A 2421 code is also a BCD code. The

8421 and 2421 codes of the decimal digits 0 to 9 are shown in the table below:

Decimal Digit 8421 Code 2421 Code

0 0000 0000

1 0001 0001

2 0010 0010

3 0011 0011

4 0100 0100

5 0101 1011

6 0110 1100

7 0111 1101

8 1000 1110

9 1001 1111

14

Non-Weighted Codes

In this type of binary codes, the positional weights are not assigned. The examples of non-weighted

codes are Excess-3 code and Gray code.

Excess-3 Code

The Excess-3 code (also written as XS-3 code) is non-weighted code used to express decimal

numbers. The Excess-3 code equivalent of a decimal number is obtained by adding a 3 to each digit

of the number and then representing each digit sum as a 4-bit binary word.

The table below shows the Excess-3 codes for the decimal numbers 0 to 9.

Decimal Digit Excess-3 Code

0 0011

1 0100

2 0101

3 0110

4 0111

5 1000

6 1001

7 1010

8 1011

9 1100

The Excess-3 code of the decimal number 469 is obtained by adding a 3 to each digits 4, 6 & 9. Each

digit sum is then represented as a 4-bit binary word. This is illustrated below:

 4 6 9

 3+ 3+ 3+

 --- --- ---

 7 9 12

 0111 1001 1100

The Excess-3 equivalent of the decimal number 469 = 0111 1001 1100

Gray Code

The gray code is a code in which two successive numbers differ by one bit position only. For

example, decimal numbers 13 and 14 are represented by gray code numbers 1011 and 1001, these

numbers differ only in single position that is the second position from the right. In the same way first

position on the left changes for 7 and 8 which are 0100 and 1100 (refer to the table below). As only

one bit changes at a time, the gray code is also referred to as a unit distance code or a reflected

code.

15

Binary Code to Gray Code Conversion

In the gray code, the 1st bit (MSB) will always be the same as the 1'st bit of the given binary number.

So, write the 1st bit as it is. The remaining bits of the gray code is obtained by performing the XOR

operation between the successive bits of the binary number. If both the bits are different, the result

will be 1, else the result will be 0.

The 2nd bit of the gray number is obtained by performing the XOR operation between the 1st and 2nd

bits of the binary number. The 3rd bit of the gray number is obtained by performing the XOR

operation between the 2nd and 3rd bits of the binary number, and so on. The gray code equivalents of

the binary codes (for the decimal numbers) are given in the table below:

Decimal Binary Code Gray Code

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 0110

5 0101 0111

6 0110 0101

7 0111 0100

8 1000 1100

9 1001 1101

10 1010 1111

11 1011 1110

12 1100 1010

13 1101 1011

14 1110 1001

15 1111 1000

Gray Code to Binary Code Conversion

In the binary code, the 1st bit (MSB) will always be the same as the 1'st bit of the given gray number.

So, write the 1st bit as it is. The 2nd bit of the binary number is obtained by performing the XOR

operation between the 1st bit of the binary number and the 2nd bit of the gray number. The 3rd bit of

the binary number is obtained by performing the XOR operation between the 2nd bit of the binary

number and the 3rd bit of the gray number. The 4th bit of the binary number is obtained by

performing the XOR operation between the 3rd bit of the binary number and the 4th bit of the gray

number, and so on.

Example:

The binary equivalent of the gray code 1101 is 1001

Binary Coded Decimal (BCD) Code

The BCD code of a decimal number is obtained by representing each digit of the number by a 4-bit

binary code. Examples of BCD codes are 8421 code, 2421 code and Excess-3 code. The various

BCD code equivalents of the decimal numbers 0 through 15 are shown in the table below:

16

Decimal 8421 Code 2421 Code XS-3 Code

0 0000 0000 0011

1 0001 0001 0100

2 0010 0010 0101

3 0011 0011 0110

4 0100 0100 0111

5 0101 1011 1000

6 0110 1100 1001

7 0111 1101 1010

8 1000 1110 1011

9 1001 1111 1100

10 0001 0000 0001 0000 0100 0011

11 0001 0001 0001 0001 0100 0100

12 0001 0010 0001 0010 0100 0101

13 0001 0011 0001 0011 0100 0110

14 0001 0100 0001 0100 0100 0111

15 0001 0101 0001 1011 0100 1000

Self-complementing Code:

A self-complementing code is a code in which the 9’s complement of a number is obtained by

complementing each bit of the number. Examples of self-complementing code are 2421 code, 5211

code and Excess-code. The different self-complementing codes are shown in the table below:

Decimal 2421 Code 5211 Code XS-3 Code

0 0000 0000 0011

1 0001 0001 0100

2 0010 0011 0101

3 0011 0101 0110

4 0100 0111 0111

5 1011 1000 1000

6 1100 1010 1001

7 1101 1100 1010

8 1110 1110 1011

9 1111 1111 1100

Alphanumeric Codes:

A binary digit or bit can represent only two symbols as it has only two states '0' or '1'. But this is not

enough for communication between two computers because there we need many more symbols for

communication. These symbols are required to represent 26 alphabets with capital and small letters,

numbers from 0 to 9, punctuation marks and other special characters.

The alphanumeric codes are the codes that represent numbers, alphabetic and other special

characters. The following two alphanumeric codes are very commonly used for the data

representation.

17

• American Standard Code for Information Interchange (ASCII).

• Extended Binary Coded Decimal Interchange Code (EBCDIC).

ASCII code is a 7-bit code whereas EBCDIC is an 8-bit code. ASCII code is more commonly used

worldwide while EBCDIC is used primarily in large IBM computers. The following tables show the

ASCII and EBCDIC codes for a few alphanumeric characters.

ASCII Symbol ASCII Symbol ASCII Symbol ASCII Symbol ASCII Symbol

010 0000 Space 011 0000 0 100 0111 G 101 0111 W 110 1101 m

010 0001 ! 011 0001 1 100 1000 H 101 1000 X 110 1110 n

010 0010 " 011 0010 2 100 1001 I 101 1001 Y 110 1111 o

010 0011 # 011 0011 3 100 1010 J 101 1010 Z 111 0000 p

010 0100 $ 011 0100 4 100 1011 K 110 0001 a 111 0001 q

010 0101 % 011 0101 5 100 1100 L 110 0010 b 111 0010 r

010 0110 & 011 0110 6 100 1101 M 110 0011 c 111 0011 s

010 0111 ' 011 0111 7 100 1110 N 110 0100 d 111 0100 t

010 1000 (011 1000 8 100 1111 O 110 0101 e 111 0101 u

010 1001) 011 1001 9 101 0000 P 110 0110 f 111 0110 v

010 1010 * 100 0001 A 101 0001 Q 110 0111 g 111 0111 w

010 1011 + 100 0010 B 101 0010 R 110 1000 h 111 1000 x

010 1100 , 100 0011 C 101 0011 S 110 1001 i 111 1001 y

010 1101 - 100 0100 D 101 0100 T 110 1010 j 111 1010 z

010 1110 . 100 0101 E 101 0101 U 110 1011 k

010 1111 / 100 0110 F 101 0110 V 110 1100 l

EBCDIC Symbol EBCDIC Symbol EBCDIC Symbol EBCDIC Symbol EBCDIC Symbol

0100 0000 Space 1000 0001 a 1001 1000 q 1100 0111 G 1110 0110 W

0100 1011 . 1000 0010 b 1001 1001 r 1100 1000 H 1110 0111 X

0100 1100 < 1000 0011 c 1010 0010 s 1100 1001 I 1110 1000 Y

0100 1101 (1000 0100 d 1010 0011 t 1101 0001 J 1110 1001 Z

0100 1110 + 1000 0101 e 1010 0100 u 1101 0010 K 1111 0000 0

0101 0000 & 1000 0110 f 1010 0101 v 1101 0011 L 1111 0001 1

0101 1100 * 1000 0111 g 1010 0110 w 1101 0100 M 1111 0010 2

0101 1101) 1000 1000 h 1010 0111 x 1101 0101 N 1111 0011 3

0101 1110 ; 1000 1001 i 1010 1000 y 1101 0110 O 1111 0100 4

0110 0000 - 1001 0001 j 1010 1001 z 1101 0111 P 1111 0101 5

0110 1011 , 1001 0010 k 1100 0001 A 1101 1000 Q 1111 0110 6

0110 1101 _ 1001 0011 l 1100 0010 B 1101 1001 R 1111 0111 7

0110 1110 > 1001 0100 m 1100 0011 C 1110 0010 S 1111 1000 8

0111 1100 @ 1001 0101 n 1100 0100 D 1110 0011 T 1111 1001 9

0111 1101 ‘ 1001 0110 o 1100 0101 E 1110 0100 U

0111 1110 = 1001 0111 p 1100 0110 F 1110 0101 V

The string – ‘WELCOME’ is represented using ASCII and EBCDIC codes as shown below.

 W E L C O M E

ASCII 101 0111 100 0101 100 1100 100 0011 100 1111 100 1101 100 0101

EBCDIC 1110 0110 1100 0101 1101 0011 1100 0011 1101 0110 1101 0100 1100 0101

18

Error Detection Codes:

Binary information transmitted through some form of communication medium is subject to external

noise that could change bits from 1 to 0, and vice versa. An error detection code is a binary code that

detects digital errors during transmission. The detected errors cannot be corrected but their presence

is indicated. The usual procedure is to observe the frequency of errors. If errors occur infrequently at

random, the particular erroneous information is transmitted again. If the error occurs too often, the

system is checked for malfunction.

The most common error detection code used is the parity bit. A parity bit is an extra bit included

with a binary message to make the total number of 1's either odd or even. A message of three bits and

two possible parity bits is shown in the following table.

3-bit

Message

Message with

Odd Parity

Message with

Even Parity

x y z Message Parity Message Parity

0 0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 1 0 0 0 1 1

0 1 0 0 1 0 0 0 1 0 1

0 1 1 0 1 1 1 0 1 1 0

1 0 0 1 0 0 0 1 0 0 1

1 0 1 1 0 1 1 1 0 1 0

1 1 0 1 1 0 1 1 1 0 0

1 1 1 1 1 1 0 1 1 1 1

The odd parity bit is chosen in such a way as to make the sum of 1's (in all four bits) odd. The even

parity bit is chosen to make the sum of all 1's even. Note that the odd parity bit is the complement of

the even parity bit.

During transfer of information from one location to another, the parity bit is handled as follows. At

the sending end, the message (in this case three bits) is applied to a parity generator, where the

required parity bit is generated. The message, including the parity bit, is transmitted to its destination.

At the receiving end, all the incoming bits (in this case, four) are applied to a parity checker that

checks the proper parity sent (odd or even). An error is detected if the received parity does not

conform to the sent parity.

Parity generator and checker circuits are constructed with exclusive-OR gates. The exclusive-OR

function of three or more variables is by definition an odd function. An odd function is a logic

function whose value is binary 1 if, and only if, an odd number of variables are equal to 1. According

to this definition, the even parity function is the exclusive-OR of x, y, and z because it is equal to 1

when either one or all three of the variables are equal to 1 (Refer the above table). The odd parity

function is the complement of the even parity function.

As an example, consider a 3-bit message to be transmitted with an odd parity bit. At the sending end,

the odd-parity bit is generated by a parity generator circuit. As shown in the figure below, this circuit

consists of one exclusive-OR and one exclusive-NOR gate. Since P(even) is the exclusive-OR of x,

y, z, and P(odd) is the complement of P(even), it is necessary to employ an exclusive-NOR gate for

the needed complementation. The message and the odd-parity bit are transmitted to their destination

where they are applied to a parity checker. An error has occurred during transmission if the parity of

19

the four bits received is even, since the binary information transmitted was originally odd. The output

of the parity checker would be 1 when an error occurs, that is, when the number of l's in the four

inputs is even. Since the exclusive-OR function of the four inputs is an odd function, we again need

to complement the output by using an exclusive-NOR gate.

20

UNIT-2

BOOLEAN ALGEBRA

Boolean algebra is the branch of algebra that is used to analyze and simplify digital (logic) circuits.

The values of the variables are the truth values TRUE and FALSE, usually denoted as 1 and 0,

respectively. The basic operations of Boolean algebra are the ‘AND’ operation indicated by a dot (.)

between variables, the ‘OR’ operation indicated by a plus symbol (+) between variables and the

‘NOT’ operation indicated by a bar (-) over a variable.

BOOLEAN LAWS AND THEOREMS

The Boolean laws and theorems are used to reduce and simplify complex Boolean expressions in an

attempt to reduce the number logic gates required to construct logic circuits. Some of the important

Boolean laws and theorems are discussed below:

Commutative law: Commutative law states that changing the sequence of the variables does not have

any effect on the output. The laws are:

(i) 𝐴. 𝐵 = 𝐵. 𝐴 (ii) 𝐴 + 𝐵 = 𝐵 + 𝐴

Associative law: This law states that the order in which the logic operations are performed is

irrelevant as their effect is the same. The laws are:

(i) (𝐴. 𝐵). 𝐶 = 𝐴. (𝐵. 𝐶) (ii) (𝐴 + 𝐵) + 𝐶 = 𝐴 + (𝐵 + 𝐶)

Distributive law: Distributive law states the following condition.

 𝐴. (𝐵 + 𝐶) = 𝐴. 𝐵 + 𝐴. 𝐶

Identity Law: A variable ORed with a “0” or ANDed with a “1” will always be equal to that variable.

 (i) 𝐴 + 0 = 𝐴 (ii) 𝐴. 1 = 𝐴

Annulment Law: A variable ANDed with a “0” equals 0 or ORed with a “1” will be equal to 1.

 (i) 𝐴. 0 = 0 (ii) 𝐴 + 1 = 1

Idempotent Law: A variable that is ANDed or ORed with itself is equal to that variable.

 (i) 𝐴 + 𝐴 = 𝐴 (ii) 𝐴. 𝐴 = 𝐴

Complement Law: A variable ANDed with its complement equals “0” and a variable ORed with its

complement equals “1”

 (i) 𝐴. �̅� = 0 (ii) 𝐴 + �̅� = 1

Inversion law: This law uses the NOT operation. The inversion law states that double inversion of

variable results in the original variable itself.

�̿� = 𝐴

Absorptive Law: This law enables a reduction in a complicated expression to a simpler one by

absorbing like terms.

(i) 𝐴 + 𝐴. 𝐵 = 𝐴 (ii) 𝐴. (𝐴 + 𝐵) = 𝐴

Other Laws: (i) 𝐴 + �̅�𝐵 = 𝐴 + 𝐵 (i) 𝐴. (�̅� + 𝐵) = 𝐴. 𝐵

21

De Morgan’s Theorems:

There are two De Morgan’s theorems in Boolean Algebra. They are:

1. First theorem : 𝐴 + 𝐵̅̅ ̅̅ ̅̅ ̅̅ = �̅�. �̅�

2. Second theorem: 𝐴. 𝐵̅̅ ̅̅ ̅ = �̅� + �̅�

First theorem : 𝑨 + 𝑩̅̅ ̅̅ ̅̅ ̅̅ = �̅�. �̅�

This theorem states that the complement of a logical sum of two variables is equivalent to the logical

product of the complements of individual variables.

Proof using Truth Tables:

A B 𝑨 + 𝑩̅̅ ̅̅ ̅̅ ̅̅ 𝑨.̅ �̅�

0 0 1 1

0 1 0 0

1 0 0 0

1 1 0 0

From the above truth table we find that 𝐴 + 𝐵̅̅ ̅̅ ̅̅ ̅̅ = �̅�. �̅�. According to this theorem, a NOR gate is

equivalent to a bubbled-AND gate.

Second theorem : 𝑨. 𝑩̅̅ ̅̅ ̅ = �̅� + �̅�

This theorem states that the complement of a logical product of two variables is equivalent to the

logical sum of the complements of individual variables.

Proof using Truth Tables:

A B 𝑨. 𝑩̅̅ ̅̅ ̅ �̅� + �̅�

0 0 1 1

0 1 1 1

1 0 1 1

1 1 0 0

From the above truth table we find that 𝐴. 𝐵̅̅ ̅̅ ̅ = �̅� + �̅�. According to this theorem, a NAND gate is

equivalent to a bubbled-OR gate.

COMPLEMENT OF A BOOLEAN FUNCTION

The complement of a Boolean function is obtained using De Morgan’s theorems as follows:

• Complement all the variables in the given function

• Change all OR (+) operations into AND (.) operations and vice versa.

Example:

Given Boolean function, 𝐹 = 𝐴𝐵 ̅ + 𝐵𝐶̅ + �̅�𝐶

The Complement of the above Boolean function is 𝐹 = (�̅� + 𝐵). (�̅� + 𝐶). (𝐴 + 𝐶̅)

22

DUALITY PRINCIPLE

This principle states that the dual of a Boolean function is obtained by interchanging the logical

AND operator with logical OR operator, the logical OR operator with logical AND operator, 0s with

1s and 1s with 0s. For every Boolean function, there will be a corresponding Dual function. The dual

equivalents of a few Boolean Laws and theorems are shown in the following table.

Boolean Law Dual Equivalent

𝐴 + 0 = 𝐴 𝐴. 1 = 𝐴

𝐴. 0 = 0 𝐴 + 1 = 1

𝐴. �̅� = 0 𝐴 + �̅� = 1

𝐴. 𝐵 = 𝐵. 𝐴 𝐴 + 𝐵 = 𝐵 + 𝐴

𝐴 + 𝐴. 𝐵 = 𝐴 𝐴. (𝐴 + 𝐵) = 𝐴

𝐴 + 𝐵̅̅ ̅̅ ̅̅ ̅̅ = �̅�. �̅� 𝐴. 𝐵̅̅ ̅̅ ̅ = �̅� + �̅�

BOOLEAN EXPRESSIONS

There are two forms of Boolean expressions in Boolean algebra. They are:

1. Sum of Products expression (SOP)

2. Product of Sums expression (POS)

Sum of Products expression (SOP): A Boolean expression consisting of logical products (minterms)

separated by OR (‘+’) operators is referred to as a sum of products expression.

Examples: 𝐹 = 𝐴𝐵 + 𝐵𝐶 + 𝐴𝐶

 𝐹 = �̅�𝐵𝐶 + 𝐴�̅�𝐶 + 𝐴𝐵𝐶̅

Product of Sums expression (POS): A Boolean expression consisting of logical sums (maxterms)

separated by AND (‘.’) operators is referred to as a product of sums expression.

Examples: 𝐹 = (𝐴 + 𝐵). (𝐵 + 𝐶). (𝐴 + 𝐶)

 𝐹 = (�̅� + 𝐵 + 𝐶). (𝐴 + �̅� + 𝐶). (𝐴 + 𝐵 + 𝐶̅)

LOGIC GATES

A logic gate is a basic building block of a digital circuit that works on the principles of Boolean

algebra. Logic gates have one or more inputs and only one output. The relationship between the input

and the output is based on certain logic.

BASIC LOGIC GATES

There are three basic logic gates. They are:

1. NOT gate

2. AND gate and

3. OR gate

23

NOT gate:

The logic symbol of a NOT gate is shown in the figure below.

A NOT gate has one input signal and one output signal. The output of a NOT gate is the complement

of its input. If the input of a NOT gate is low (0), the output is high (1) and if the input is high (1), the

output is low (0). A NOT gate is also referred to as an inverter or a complementer. The working of a

NOT gate is illustrated in the truth table given below:

Input

A

Output

�̅�

0 1

1 0

AND gate:

An AND gate has two or more input signals and one output signal. The logic symbol of 2-input AND

gate is shown in the figure below. A and B are inputs and Y (= A.B) is the output.

The output of an AND gate is high (1) when all the inputs are high. The output is low when any one

of the inputs in low. The truth table of a 2-input AND gate is given in the table below.

Inputs Output

Y=A.B A B

0 0 0

0 1 0

1 0 0

1 1 1

OR gate:

An OR gate has two or more input signals and one output signal. The logic symbol of a 2-input OR

gate is shown below.

 The output of an OR gate is high (1) when any one of the inputs is high (1). The output is low (0)

only when all the inputs are low (0). The truth table of a 2-input OR gate is given below.

Inputs Output

Y=A+B A B

0 0 0

0 1 1

1 0 1

1 1 1

24

OTHER LOGIC GATES

NAND gate:

A NAND gate has two or more input signals and one output signal. A NAND gate is constructed

using an AND gate and a NOT gate as shown below:

 AND + NOT = NAND

The logic symbol of a 2-input NAND gate is shown below:

The output of a NAND gate is high when any one of the inputs is low. The output is low when all

the inputs are high. The truth table of a NAND gate is given below:

Inputs Output

𝑨. 𝑩̅̅ ̅̅ ̅ A B

0 0 1

0 1 1

1 0 1

1 1 0

The output of a NAND gate is the complement of an AND gate.

NOR gate:

A NOR gate has two or more input signals and one output signal. A NOR gate is constructed using

an OR gate and a NOT gate as shown below:

 OR + NOT = NOR

The logic symbol of a 2-input NOR gate is shown below:

The output of a NOR gate is high when all the inputs are low. The output is low when any one of the

inputs is high. The truth table of a NOR gate is given below:

25

Inputs Output

𝑨 + 𝑩̅̅ ̅̅ ̅̅ ̅̅ A B

0 0 1

0 1 0

1 0 0

1 1 0

The output of a NOR gate is the complement of an OR gate.

Bubbled-OR gate: (Invert OR)

A bubbled-OR gate is constructed using two NOT gates and one OR gate as shown in the following

diagram.

The logic symbol of a bubbled-OR gate is shown below.

The truth table of a bubbled-OR gate is given below.

Inputs Output

�̅� + �̅� A B

0 0 1

0 1 1

1 0 1

1 1 0

The output of a bubbled-OR gate is high when any one of the inputs is low. The output is low when

all the inputs are high. A bubbled-OR gate is equivalent to a NAND gate.

Bubbled-AND gate:

A bubbled-AND gate is constructed using two NOT gates and one AND gate as shown in the

following diagram.

26

The logic symbol of a bubbled-AND gate is shown below.

The truth table of a bubbled-AND gate is given below.

Inputs Output

�̅� . �̅� A B

0 0 1

0 1 0

1 0 0

1 1 0

The output of a bubbled-AND gate is high when any one of the inputs is low. The output is low

when all the inputs are high. A bubbled-AND gate is equivalent to a NOR gate.

Exclusive-OR gate (EX-OR or XOR gate):

An EX-OR gate (sometimes referred to as Exclusive-OR gate) is a digital logic gate with two or more

inputs and one output. The output of an exclusive-OR gate is expressed as a Boolean function, 𝑌 =
𝐴�̅� + �̅�𝐵. The circuit diagram of an EX-OR gate is shown following figure.

The logic symbol of an EX-OR gate is given below:

The output of the EX-OR gate is expressed in the truth table given below:

Inputs Output

�̅�𝑩 + 𝑨�̅� A B

0 0 0

0 1 1

1 0 1

1 1 0

The output of an EX-OR gate is high when the inputs are different. The output is low when the inputs

are same. In general, the output of an EX-OR gate is high when the number of high inputs is odd.

The output is low otherwise.

27

Exclusive-NOR gate (EX-NOR or XNOR gate):

The logic symbol of an EX-OR gate is given below:

The output of the EX-NOR gate is expressed in the truth table given below:

Inputs Output

�̅�𝑩 + 𝑨�̅�̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ A B

0 0 1

0 1 0

1 0 0

1 1 1

The output of an EX-NOR gate is low when the inputs are different and the output is high when the

inputs are same. In general, the output of an EX-NOR gate is low when the number of high inputs is

odd. The output is high otherwise.

UNIVERSAL LOGIC GATES

NAND and NOR gates are referred to as universal gates. They are called so because all the other

gates can be constructed using these gates.

NAND as a Universal Gate:

NAND as a NOT gate:

A NOT gate is constructed using a NAND gate by combining both of its inputs into a single input as

shown below. The output of this circuit is the complement of its input.

NAND as AND gate:

An AND gate is constructed using two NAND gates as shown below:

The output of the first NAND gate is 𝐴. 𝐵̅̅ ̅̅ ̅. This output is given as input to the second NAND gate to

obtain A.B as the final output.

28

NAND as OR gate:

An OR gate is constructed using three NAND gates as shown in the circuit below.

The output of the first NAND gate is �̅� and that of the second NAND gate is �̅�. These two outputs

are fed into the third NAND gate as inputs to obtain A+B as the final output. This is shown in the

expression below.

�̅�. �̅�̅̅ ̅̅ ̅ = �̿� + �̿� = 𝐴 + 𝐵

NAND as NOR gate:

A NOR gate is constructed using four NAND gates. The output of the OR gate (see previous

diagram) is connected to the input of a NOT gate as shown below.

NAND as XOR gate:

An XOR gate is constructed using four NAND gates as shown below:

NOR as a Universal Gate:

NOR as NOT gate:

A NOT gate is constructed using a NOR gate by combining both of its inputs into a single input as

shown below. The output of this circuit is the complement of its input.

29

NOR as OR gate:

An OR gate is constructed using two NOR gates as shown below. The output of the first NAND gate

is 𝐴 + 𝐵̅̅ ̅̅ ̅̅ ̅̅ . This output is given as input to the second NAND gate to obtain A+B as the final output.

NOR as AND gate:

An AND gate is constructed using three NOR gates as shown in the circuit below.

The output of the first NOR gate is �̅� and that of the second NOR gate is �̅�. These two outputs are

fed into the third NOR gate as inputs to obtain A.B as the final output. This is shown in the

expression below.

�̅� + �̅�̅̅ ̅̅ ̅̅ ̅̅ = �̿�. �̿� = 𝐴. 𝐵

NOR as NAND gate:

A NAND gate is constructed using four NOR gates. The output of the AND gate (see previous

diagram) is connected to the input of a NOT gate as shown below.

NOR as XOR gate:

An XOR gate is constructed using five NOR gates as shown below:

30

IMPLEMENTATION OF BOOLEAN EXPRESSIONS USING GATE NETWORKS

SOP Expression: An SOP form of expression can be implemented using AND gates in the first level

and OR gates in the second level. The resultant circuit is referred to as a AND-OR circuit.

Consider the Boolean expression, 𝐹 = 𝐴𝐵 + 𝐵𝐶.

This expression can be implemented using AND-OR circuit as shown in the following figure.

Any AND-OR circuit can be converted into a NAND-NAND circuit by replacing all the gates in the

AND-OR circuit with NAND gates. This is illustrated below.

POS Expression: A POS form of expression can be implemented using OR gates in the first level and

AND gates in the second level. The resultant circuit is referred to as a OR-AND circuit.

Consider the Boolean expression, 𝐹 = (𝐴 + 𝐵)(𝐵 + 𝐶).

This expression can be implemented using OR-AND circuit as shown in the following figure.

31

Any OR-AND circuit can be converted into a NOR-NOR circuit by replacing all the gates in the OR-

AND circuit with NOR gates. This is illustrated below.

SIMPLIFICATION OF BOOLEAN EXPRESSIONS

The most practical use of Boolean algebra is to simplify logic circuits. A Boolean expression can be

implemented directly in a logic circuit. The number of terms and operations in a Boolean expression

is directly related to the number of logic components. Through Boolean algebra simplification, a

Boolean expression is translated to another form with less number of terms and operations. A logic

circuit for the simplified Boolean expression performs the identical function with fewer logic

components as compared to its original form. Additionally, the simplified Boolean expression when

implemented to a logic circuit is reliable with a reduced cost.

32

Simplification of Boolean Expressions using laws of Boolean algebra:

1. F = �̅�𝐵𝐶 + 𝐴�̅�𝐶 + 𝐴𝐵𝐶̅ + 𝐴𝐵𝐶

 = �̅�𝐵𝐶 + 𝐴�̅�𝐶 + 𝐴𝐵(𝐶̅ + 𝐶)

 = �̅�𝐵𝐶 + 𝐴�̅�𝐶 + 𝐴𝐵 [Since 𝐶̅ + 𝐶 = 1]

 = �̅�𝐵𝐶 + 𝐴(�̅�𝐶 + 𝐵)

 = �̅�𝐵𝐶 + 𝐴(𝐵 + �̅�𝐶)

 = �̅�𝐵𝐶 + 𝐴(𝐵 + 𝐶) [Since 𝐵 + �̅�𝐶 = 𝐵 + 𝐶]

 = �̅�𝐵𝐶 + 𝐴𝐵 + 𝐴𝐶

 = 𝐵(�̅�𝐶 + 𝐴) + 𝐴𝐶

 = 𝐵(𝐴 + �̅�𝐶) + 𝐴𝐶

 = 𝐵(𝐴 + 𝐶) + 𝐴𝐶 [Since 𝐴 + �̅�𝐶 = 𝐴 + 𝐶]

 = 𝐴𝐵 + 𝐵𝐶 + 𝐴𝐶

2. F = �̅��̅�𝐶 + �̅�𝐵𝐶̅ + �̅�𝐵𝐶 + 𝐴𝐵𝐶

 = �̅��̅�𝐶 + �̅�𝐵𝐶̅ + 𝐵𝐶(�̅� + 𝐴)

 = �̅��̅�𝐶 + �̅�𝐵𝐶̅ + 𝐵𝐶 [Since �̅� + 𝐴 = 1]

 = �̅��̅�𝐶 + 𝐵(�̅�𝐶̅ + 𝐶)

 = �̅��̅�𝐶 + 𝐵(�̅� + 𝐶) [Since �̅�𝐶̅ + 𝐶 = �̅� + 𝐶]

 = �̅��̅�𝐶 + 𝐵�̅� + 𝐵𝐶

 = �̅��̅�𝐶 + �̅�𝐵 + 𝐵𝐶

 = �̅�(�̅�𝐶 + 𝐵) + 𝐵𝐶

 = �̅�(𝐵 + �̅�𝐶) + 𝐵𝐶

 = �̅�(𝐵 + 𝐶) + 𝐵𝐶 [Since 𝐵 + �̅�𝐶 = 𝐵 + 𝐶]

 = �̅�𝐵 + �̅�𝐶 + 𝐵𝐶

3. F = �̅��̅�𝐶̅ + �̅��̅�𝐶 + �̅�𝐵𝐶 + 𝐴�̅�𝐶 + 𝐴𝐵𝐶

 = �̅��̅�(𝐶̅ + 𝐶) + �̅�𝐵𝐶 + 𝐴𝐶(�̅� + 𝐵)

 = �̅��̅� + �̅�𝐵𝐶 + 𝐴𝐶

 = �̅�(�̅� + 𝐵𝐶) + 𝐴𝐶

 = �̅�(�̅� + 𝐶) + 𝐴𝐶 [Since �̅� + 𝐵𝐶 = �̅� + 𝐶]

 = �̅��̅� + �̅�𝐶 + 𝐴𝐶

 = �̅��̅� + 𝐶(�̅� + 𝐴)

 = 𝐴 ̅�̅� + 𝐶 [Since �̅� + 𝐴 = 1]

33

4. F = �̅��̅�𝐶̅ + �̅��̅�𝐶 + �̅�𝐵𝐶̅ + 𝐴�̅�𝐶̅ + 𝐴�̅�𝐶 + 𝐴𝐵𝐶̅

= �̅��̅�(𝐶̅ + 𝐶) + 𝐵𝐶̅(�̅� + 𝐴) + 𝐴�̅�(𝐶̅ + 𝐶)

= �̅��̅� + 𝐵𝐶̅ + 𝐴�̅�

= �̅�(�̅� + 𝐴) + 𝐵𝐶̅

= �̅� + 𝐵𝐶̅ [Since �̅� + 𝐵𝐶̅ = �̅� + 𝐶̅]

= �̅� + 𝐶̅

Simplification of Boolean Expressions – Karnaugh Map Method

The Karnaugh Map is a method of simplifying Boolean expressions without using Boolean laws, so

that they can be implemented using a minimum number of logic gates.

Structure of the Karnaugh Map:

The structure of Karnaugh Map depends on the number of variables in a given Boolean expression.

Depending on the number of variables present in the Boolean expression, the Karnaugh Maps are

classified as:

1. Two-variable Karnaugh Map

2. Three-variable Karnaugh Map

3. Four-variable Karnaugh Map

Two-variable Karnaugh Map:

A two-variable Karnaugh Map is used for simplifying Boolean expressions containing two different

variables. The structure of a two-variable Karnaugh map is shown below.

Three-variable Karnaugh Map:

A three-variable Karnaugh Map is used for simplifying Boolean expressions containing three

different variables. The structure of a three-variable Karnaugh map is shown below.

34

Four-variable Karnaugh Map:

A four-variable Karnaugh Map is used for simplifying Boolean expressions containing four different

variables. The structure of a four-variable Karnaugh map is shown below.

Grouping of Minterms (Pair, Quad, Octet):

Pair : A pair is a group of two adjacent 1’s or 0’s. A pair will eliminate one variable.

Examples:

Quad : A quad is a group of four adjacent 1’s or 0’s. A quad will eliminate two variables.

Examples:

Octet : An octet is a group of four adjacent 1’s or 0’s. An octet will eliminate three variables.

Examples:

35

Overlapping groups:

Examples

Folding the map:

Examples

Double folding:

Example:

Redundant groups: A group is said to be redundant if all its 1’s or 0’s are used by other groups.

Redundant groups, if any, should be eliminated.

36

Examples

Simplification Problems using Karnaugh Map: (Refer class notes)

Karnaugh maps can be used to simplify Boolean expressions in both SOP and POS forms.

Simplification of Boolean expressions in SOP form:

1. Fill up the Karnaugh map with 1’s and 0’s according to the given expression,

2. Consider 1’s and group them into all possible groups.

3. Write the simplified SOP form of expression from the map.

4. Draw AND-OR circuit for the simplified expression.

5. Convert the above circuit into a NAND-NAND circuit by replacing all the gates in the circuit

with NAND gates.

Simplification of Boolean expressions in POS form:

1. Fill up the Karnaugh map with 1’s and 0’s according to the given expression,

2. Consider 0’s and group them into all possible groups.

3. Write the expression from the map.

4. Complement the above expression to obtain the simplified POS form of expression.

5. Draw OR-AND circuit for the simplified expression.

6. Convert the above circuit into a NOR-NOR circuit by replacing all the gates in the circuit

with NOR gates.

37

UNIT-3

COMBINATIONAL CIRCUITS

MULTIPLEXER

Multiplex means many-to-one. A multiplexer is a combinational circuit that has maximum of 2n data

inputs, ‘n’ selection (control) lines and one output line. One of these data inputs will be connected to

the output based on the values of selection lines.

Since there are ‘n’ selection lines, there will be 2n possible combinations of 0s and 1s. So, each

combination will select only one data input. Multiplexer is also called as MUX.

4x1 Multiplexer

4x1 Multiplexer has four data inputs D0, D1, D2, D3, two selection lines S1 and S0 and one output

Y. The block diagram of a 4x1 Multiplexer is shown in the following figure.

One of these 4 inputs will be connected to the output based on the combination of inputs present at

these two selection lines.

Internal Diagram of 4x1 Multiplexer:

38

The truth table of 4x1 Multiplexer is shown below.

Selection Inputs Output

S1 S0 Y

0 0 D0

0 1 D1

1 0 D2

1 1 D3

DEMULTIPLEXER

Demultiplex means one-to-many. A De-Multiplexer is a combinational circuit that performs the

reverse operation of a Multiplexer. It has single input, ‘n’ selection lines and maximum of 2n

outputs. The input will be connected to one of these outputs based on the values of selection lines.

Since there are ‘n’ selection lines, there will be 2n possible combinations of 0s and 1s. So, each

combination can select only one output. De-Multiplexer is also called as DEMUX.

1x4 De-Multiplexer

1x4 De-Multiplexer has one input I, two selection lines, S1 and S0 and four outputs Y3, Y2, Y1 &

Y0.

The block diagram of 1x4 De-Multiplexer is shown in the following figure.

The single input ‘D’ will be connected to one of the four outputs, Y3 to Y0 based on the values of

selection lines S1 and S0. The circuit diagram of 1x4 De-Multiplexer is shown in the following

figure.

39

The Truth table of 1x4 De-Multiplexer is shown below.

Selection Inputs Outputs

S1 S0 Y3 Y2 Y1 Y0

0 0 0 0 0 D

0 1 0 0 D 0

1 0 0 D 0 0

1 1 D 0 0 0

DECODER

A Decoder is a combinational circuit that has ‘n’ input lines and 2n output lines. One of these

outputs will be active High (enabled) based on the combination of inputs present.

2-to-4 Decoder:

A 2-to-4 Decoder has two inputs D1 & D0 and four outputs Y3, Y2, Y1 & Y0. The block diagram of a

2-to-4 decoder is shown in the following figure.

40

One of these four outputs will be ‘1’ for each combination of inputs.

The circuit diagram of 2-to-4 decoder is shown in the following figure.

The Truth table of 2 to 4 decoder is shown below.

Inputs Outputs

D1 D0 Y3 Y2 Y1 Y0

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0

ENCODER

An Encoder is a combinational circuit that performs the reverse operation of Decoder. It has

maximum of 2n input lines and ‘n’ output lines. It will produce a binary code equivalent to the input,

which is active High. Therefore, the encoder encodes 2n input lines with ‘n’ bits. It is optional to

represent the enable signal in encoders.

4 to 2 Encoder:

Let 4 to 2 Encoder has four inputs Y3, Y2, Y1 & Y0 and two outputs A1 & A0. The block diagram of

4 to 2 Encoder is shown in the following figure.

41

At any time, only one of these 4 inputs can be ‘1’ in order to get the respective binary code at the

output. The Truth table of 4 to 2 encoder is shown below.

Inputs Outputs

Y3 Y2 Y1 Y0 A1 A0

0 0 0 1 0 0

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 0 1 1

We can implement the above two Boolean functions by using two input OR gates. The circuit

diagram of 4 to 2 encoder is shown in the following figure.

The above circuit diagram contains two OR gates. These OR gates encode the four inputs with two

bits

Octal to Binary Encoder (Octal encoder):

Octal to binary Encoder has eight inputs, Y7 to Y0 and three outputs A2, A1 & A0. Octal to binary

encoder is nothing but 8 to 3 encoder. The block diagram of octal to binary Encoder is shown in the

following figure.

42

At any time, only one of these eight inputs can be ‘1’ in order to get the respective binary code.

The Truth table of octal to binary encoder is shown below.

Inputs Outputs

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 A2 A1 A0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0 1

0 1 0 0 0 0 0 0 1 1 0

1 0 0 0 0 0 0 0 1 1 1

We can implement the above Boolean functions by using four input OR gates. The circuit

diagram of octal to binary encoder is shown in the following figure.

The above circuit diagram contains three 4-input OR gates. These OR gates encode the eight inputs

with three bits.

ARITHMETIC CIRCUITS

HALF ADDER

A half adder is a combinational circuit that generates the arithmetic sum of two bits at time. The

circuit has two inputs and two outputs (Sum and Carry). The truth table of a half adder is given

below:

43

Inputs Outputs

A B Sum Carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

The Carry output is 0 unless both inputs are 1. The simplified Boolean expressions for the two

outputs Sum and Carry can be obtained directly from the truth table. The expressions are:

Sum = A’B + AB’ (XOR gate)

Carry = AB (AND gate)

From the above expressions we find that the Sum output represents the output of a 2-input EXOR

gate and the Carry output represents the output of an AND gate. The circuit of a half adder can be

constructed using a 2-input EXOR gate and an AND gate as shown below.

FULL ADDER

A full adder is a combinational circuit that generates the arithmetic sum of three bits at time. The

circuit has three inputs and two outputs (Sum and Carry). The truth table of a full adder is given

below:

Inputs Outputs

A B C Sum Carry

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

44

The simplified Boolean expressions for the two outputs Sum and Carry can be obtained directly from

the truth table. The expressions are:

Sum = A’B’C + A’BC’ + AB’C’ + ABC

Carry = A’BC + AB’C + ABC’ + ABC

From the above expressions we find that the Sum output represents the output of a 3-input EXOR

gate. The simplified expression for Carry output can be derived using a Karnaugh map as shown

below:

 B’C’ B’C BC BC’

A’ 0 0 1 0

A 0 1 1 1

The simplified expression for Carry output is obtained as:

Carry = AB + BC + AC

The circuit diagram of a full adder can now be constructed using a 3-input EXOR gate (for Sum

output) and a combinational circuit for the expression AB + BC + AC (for Carry output) as shown

below:

HALF SUBTRACTOR

A half subtractor is a combinational circuit that finds the arithmetic difference between two bits at a

time. The circuit has two inputs and two outputs (Difference and Borrow). The truth table of a half

subtractor is given below:

Inputs Outputs

A B Difference Borrow

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

For 0 – 1, a borrow of 1 is required to get a difference of 1. The simplified Boolean expressions for

the two outputs Difference and Borrow can be obtained directly from the truth table. The expressions

are:

45

Difference = A’B + AB’

Borrow = A’B

From the above expressions we find that the Difference output represents the output of a 2-input

EXOR gate and Borrow output represents A’B. The circuit of a half subtractor can be constructed

using a 2-input EXOR gate and a combinational circuit for A’B, as shown below.

FULL SUBTRACTOR

A full subtractor is a combinational circuit that finds the arithmetic difference between three bits at

time. The circuit has three inputs and two outputs (Difference and Borrow). The truth table of a full

subtractor is given below:

Inputs Outputs

A B C Difference Borrow

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

The simplified Boolean expressions for the two outputs Difference and Borrow can be obtained

directly from the truth table. The expressions are:

Difference = A’B’C + A’BC’ + AB’C’ + ABC

Borrow = A’B’C + A’BC’ + A’BC + ABC

From the above expressions we find that the Difference output represents the output of a 3-input

EXOR gate. The simplified expression for Borrow output can be derived using a Karnaugh map as

shown below:

 B’C’ B’C BC BC’

A’ 0 1 1 1

A 0 0 1 0

The simplified expression for Borrow output is obtained as:

Borrow = A’B + BC + A’C

46

The circuit diagram of a full subtractor can now be constructed using a 3-input EXOR gate (for

Difference output) and a combinational circuit for the expression A’B + BC + A’C (for Borrow

output) as shown below:

PARALLEL BINARY ADDER

The digital circuit that generates the arithmetic sum of two binary numbers is called a parallel binary

adder. The circuit diagram of a 4-bit parallel binary adder is shown in the figure below.

The two binary numbers are designated as A3A2A1A0 and B3B2B1B0. The sum bits generated by the

circuit are designated as S3S2S1S0. For the addition of the bits A0 and B0 we require a half-adder. This

addition generates a carry bit (C0) to the next position thereby requiring a full-adder to carry out this

addition of three bits. Hence for all subsequent additions full-adders are required. The final carry

generated by the parallel binary adder is C3. An n-bit parallel binary adder requires 1 half-adder and

n-1 full-adders.

2’S COMPLEMENT ADDER-SUBTRACTOR

A 2’s complement adder-subtractor is a combinational circuit that performs both addition and

subtraction of two binary words. The subtraction can also be performed by means of 2’s complement

addition. The subtraction A – B can be carried out by taking the 2’s complement of B and adding it to

A. The 2’s complement can be obtained by taking the 1’s complement and adding a 1 to the least

significant pair of bits. The following figure shows the circuit diagram of a 4-bit adder-subtractor.

47

 The circuit includes an exclusive-OR gate with each full adder. The exclusive-OR gate acts as

a controlled inverter that helps in obtaining the 1’s complement of a binary number for subtraction.

The mode input M controls the operation. When M = 0 the circuit performs as an adder and when M

= 1 the circuit performs as a subtractor. Each exclusive-OR gate receives input M an one of the

inputs of B. When M = 0, we have B ⊕ 0 = B. The full-adders receive the value of B, the input

carry is 0, and the circuit performs A plus B (Addition). when M = 1, we have B ⊕ 0 = B’. The B

inputs are all complemented and a 1 is added through the input carry. The circuit performs the

operation A plus the 2’s Complement of B (Subtraction).

BCD ADDER

A BCD adder is a circuit that performs the addition of two BCD digits in parallel and

produces a sum digit also in BCD form. Suppose that we apply two BCD digits to a 4-bit binary

adder. The adder will form the sum in binary and produce a result that may range from 0 to 18.

When the binary sum is equal to or less than 1001, the corresponding BCD number is identical and

therefore no conversion is needed. When the binary sum is greater than 1001, we obtain a non-BCD

representation. The addition of binary 6 (0110) to the binary sum converts it to the correct BCD

representation and also produces an output carry as required. It is obvious that a correction is also

needed when the binary sum has an output carry K = 1. The other six combinations from 1010 to

1111 that need a correction have a 1 in position Z8. To differentiate them from binary 1000 and 1001,

which also have a 1 in position Z8, we specify further that either Z4 or Z2 must have a 1. The

condition for a correction and an output-carry can be expressed by the Boolean function, C = K + Z8

Z4 + Z8 Z2.

The binary sum and the corresponding BCD sum are listed in Table given below. The bits of

the binary sum are labeled by symbols K, Z8, Z4, Z2, and Z1. K is the carry and the subscripts under

the letter Z represent the weights 8, 4, 2, and 1 that can be assigned to the four bits in the BCD code.

The first column in the table lists the binary sums as they appear in the outputs of a 4-bit binary

adder. The output sum of two decimal numbers must be represented in BCD and should appear in the

form listed in the second column of the table.

48

 The block diagram of a BCD adder is shown in the figure below.

 The circuit consists of two 4-bit binary adders and the correction logic. The two decimal

digits are first added in the top 4-bit binary adder to produce the binary sum. When the output-carry

is equal to 0, nothing is added to the binary sum. When it is equal to 1, binary 0110 is added to the

binary sum through the bottom 4-bit binary adder. The output-carry generated from the bottom

binary adder may be ignored, since it supplies information already available in the output-carry

terminal.

49

UNIT-4

SEQUENTIAL CIRCUITS

FLIP-FLOPS

1. Flipflop is a sequential circuit used to store a binary digit (Bit)

2. One flipflop is required to store one bit (0 or 1)

3. A flipflop may have one or two inputs and two outputs. One output is complement of the

other.

4. A group of flipflops used to store a binary word is called a register.

5. A flipflop is a bistable memory element that stores 0 or 1.

R-S Flip-flop Element (Latch):

The R-S flip-flop can be realized using NAND gates. The circuit diagram and the truth table of R-S

flip-flop are shown below.

R S Q

0 0 * Forbidden State

0 1 1 Set State

1 0 0 Reset State

1 1 NC No Change State

A 0 on any input to NAND gate will make its output high. Therefore, when R=0 and S=0, the output

of the flip-flop becomes unpredictable. This state is sometimes referred to as a forbidden state or race

condition. When R=0 and S=1, the output Q of the flip-flop is set to 1. This state is called set state.

When R=1 and S=0, the output Q of the flip-flop is reset to 0. This state is called reset state. When

R=1 and S=1, the output Q of the flip-flop will remain in its previous state. In other words, the output

of the flip-flop will not change.

Clocked R-S or S-R flip-flop:

The circuit diagram and the truth table of a S-R flip-flop are shown below.

50

CLK S R Q

0 X X NC No Change State

1 0 0 NC No Change State

1 0 1 0 Reset State

1 1 0 1 Set State

1 1 1 * Forbidden State

When the CLK input is 0, the output of the flip-flop will not change irrespective of the inputs at S

and R. The flip-flop is disabled when the clock is 0. When the CLK input is 1, the output of the flip-

flop will change according to the S and R inputs. The flip-flop is enabled when the clock is 1. The

response of the flip-flop for various S and R inputs, when the CLK is 1, is as follows.

When R=0 and S=0, the output of the flip-flop will not change. When R=0 and S=1, the output Q of

the flip-flop is set to 1. When R=1 and S=0, the output Q of the flip-flop is reset to 0. When R=1 and

S=1, the output Q of the flip-flop becomes unpredictable.

D flip-flop:

The circuit diagram and the truth table of a D flip-flop are shown below.

CLK D Q

0 X NC No Change State

1 0 0 Reset State

1 1 1 Set State

When the CLK input is 0, the output of the flip-flop will not change irrespective of the input D. The

flip-flop is disabled when the clock is 0. When the CLK input is 1, the output of the flip-flop will

change according to the D input. The flip-flop is enabled when the clock is 1. The response of the

flip-flop for various D input, when the CLK is 1, is as follows. When D=0, the output Q of the flip-

flop become 0 (reset). When D=1, the output Q of the flip-flop become 1 (set). There is no forbidden

or unpredictable state in a D flip-flop. A D flip-flop is sometimes referred to as a data flip-flop.

51

J-K flip-flop:

The circuit diagram and the truth table of a J-K flip-flop are shown below.

CLK J K Q

0 X X NC No Change State

1 0 0 NC No Change State

1 0 1 0 Reset State

1 1 0 1 Set State

1 1 1 Q’ Toggle State

When the CLK input is 0, the output of the flip-flop will not change irrespective of the inputs at J and

K. The flip-flop is disabled when the clock is 0. When the CLK input is 1, the output of the flip-flop

will change according to the J and K inputs. The flip-flop is enabled when the clock is 1. The

response of the flip-flop for various J and K inputs, when the CLK is 1, is as follows.

When J=0 and K=0, the output of the flip-flop will not change. When J=0 and K=1, the output Q of

the flip-flop is set to 1. When J=1 and K=0, the output Q of the flip-flop is reset to 0. When J=1 and

K=1, the clock pulse switches the output of the flip-flop to its complement state. This state is also

referred to as toggle state. There is no forbidden or unpredictable state in a D flip-flop.

T flip-flop:

The circuit diagram and the truth table of a T flip-flop are shown below.

CLK T Q

0 X NC No Change State

1 0 NC No Change State

1 1 Q’ Toggle State

52

A T flip-flop can be realized from a J-K flip-flop when inputs J and K are combined to provide a

single input designated as T. When the CLK input is 0, the output of the flip-flop will not change

irrespective of the input T. The flip-flop is disabled when the clock is 0. When the CLK input is 1,

the output of the flip-flop will change according to the T input. The flip-flop is enabled when the

clock is 1.

The response of the flip-flop for various T input, when the CLK is 1, is as follows. When T=0, the

output Q of the flip-flop will remain unchanged When T=1, the clock pulse switches the output of the

flip-flop to its complement (toggle) state. A T flip-flop is sometimes referred to as a toggle flip-flop.

J-K Master-Slave Flip-flop:

The circuit diagram of a J-K Master-Slave flip-flop is shown below.

The circuit consists of two J-K flip-flops of which one is called the master and other the slave. The

master flip-flop is positive-edge-triggered and the slave is negative-edge triggered. Therefore, the

master responds to its J and K inputs before the slave. The master flip-flop changes state during the

positive clock pulse and the slave changes state during the successive negative clock pulse.

If J = 1 and K = 0, the master sets on the positive clock edge. The high Q output of the master drives

the J input of the slave. So, when the negative clock edge hits, the slave sets, copying the action of

the master. If J = 0 and K = 1, the master resets on the positive clock edge. The high Q’ output of

the master drives the K input of the slave. Hence, the arrival of the negative clock edge forces the

slave to reset. If the J and K inputs of the master are both high, it toggles on the positive clock edge

and the slave then toggles on the negative clock edge. Regardless of what the master does, therefore,

the slave copies it; if the master sets, the slave sets; if the master resets, the slave resets.

SHIFT REGISTER

A register is a group of flip-flops that can be used to store a binary word. There must be one flip-flop

for each bit in the binary word. For instance, a register used to store an 8-bit word must have eight

flip-flops. A register capable of shifting its binary information in one or both directions is called a

shift register. The logical organization of a shift register consists of a chain of flip-flops in cascade,

with the output of one flip-flop connected to the input of the next flip-flop. All flip-flops receive

common clock pulses that initiate the shift from one stage to the next. The shift register that shifts

bits towards right is called a shift right register and that which shifts towards left is called a shift left

register.

53

Shift Right Register:

The circuit diagram of a 4-bit shift right register, constructed using J-K flip-flops, is shown in the

figure below.

For a J-K flip-flop, the data bit to be shifted into the flip-flop must be present at the J and K inputs

when the clock strikes. To shift a 0 into the flip-flop, J = 0 and K = 1. To shift a 1 into the flip-flop,

J = 1 and K = 0. The circuit consists of four J-K flip-flops, whose outputs are designated as A, B, C,

and D. The data bits to be shifted are given at the J and K inputs of flip-flop A. The outputs of flip-

flop A is connected to the inputs of flip-flop B. The outputs of flip-flop B is connected to the inputs

of flip-flop C and so on. The clock pulse is connected to all the flip-flops as shown in the figure.

Consider the data bits at the inputs of flip-flop A as J = 1, and K = 0. As the clock pulses are applied

to all the flip-flops directly, each flip-flop changes state depending on its J and K inputs at the time of

arrival of the clock pulse. When the first clock pulse strikes, the 0 in C is shifted into D, the 0 in B is

shifted into C, the 0 in A is shifted into B and the data input 1 is shifted into A. At this point of time

the output ABCD = 1000. When the second clock pulse strikes, the 0 in C is shifted into D, the 0 in B

is shifted into C, the 1 in A is shifted into B and the data input 1 is shifted into A. The output at this

stage is ABCD = 1100. The shifting continues in this order for every strike of the clock pulse and at

the end of the fourth clock pulse the outputs of the flip-flops would be ABCD = 1111.

Similarly, consider the data bits at the inputs of flip-flop A as J = 0, and K = 1. When the first clock

pulse strikes, the 1 in C is shifted into D, the 1 in B is shifted into C, the 1 in A is shifted into B and

the data input 0 is shifted into A. At this point of time the output ABCD = 0111. When the second

clock pulse strikes, the 1 in C is shifted into D, the 1 in B is shifted into C, the 0 in A is shifted into B

and the data input 0 is shifted into A. The output at this stage is ABCD = 0011. The shifting

continues in this order for every strike of the clock pulse and at the end of the fourth clock pulse the

outputs of the flip-flops would be ABCD = 0000. This is illustrated in the table given below.

 CLK A B C D
 0 0 0 0 0

J=1, K=0 1 1 0 0 0
 2 1 1 0 0
 3 1 1 1 0
 4 1 1 1 1

J=0, K=1 5 0 1 1 1
 6 0 0 1 1
 7 0 0 0 1
 8 0 0 0 0

54

Shift Left Register:

The circuit diagram of a 4-bit shift left register, constructed using J-K flip-flops, is shown in the

figure below:

The circuit consists of four J-K flip-flops, whose outputs are designated as A, B, C, and D. The data

bits to be shifted are given at the J and K inputs of flip-flop D. The outputs of flip-flop D is

connected to the inputs of flip-flop C. The outputs of flip-flop C is connected to the inputs of flip-

flop B and so on. The clock pulse is connected to all the flip-flops as shown in the figure.

Consider the data bits at the inputs of flip-flop D as J = 1, and K = 0. As the clock pulses are applied

to all the flip-flops directly, each flip-flop changes state depending on its J and K inputs at the time of

arrival of the clock pulse. When the first clock pulse strikes, the data input 1 is shifted into D, the 0 in

D is shifted into C, the 0 in C is shifted into B and the 0 in B is shifted into A. At this point of time

the output ABCD = 0001. When the second clock pulse strikes, the 1 in D is shifted into C, the 0 in C

is shifted into B, and the 0 in B is shifted into A. The output at this stage is ABCD = 0011. The

shifting continues in this order for every strike of the clock pulse and at the end of the fourth clock

pulse the outputs of the flip-flops would be ABCD = 1111.

Similarly consider the data bits at the inputs of the flip-flop D as J = 0 and K = 1. When the first

clock pulse strikes, the data input 0 is shifted into D, the 1 in D is shifted into C, the 1 in C is shifted

into B and the 1 in B is shifted into A. At this point of time the output ABCD = 1110. When the

second clock pulse strikes, the 0 in D is shifted into C, the 1 in C is shifted into B, and the 1 in B is

shifted into A. The output at this stage is ABCD = 1100. The shifting continues in this order for every

strike of the clock pulse and at the end of the fourth clock pulse the outputs of the flip-flops would be

ABCD = 0000. This is illustrated in the table given below.

 CLK A B C D
 0 0 0 0 0

J=1, K=0 1 0 0 0 1
 2 0 0 1 1
 3 0 1 1 1
 4 1 1 1 1

J=0, K=1 5 1 1 1 0
 6 1 1 0 0
 7 1 0 0 0
 8 0 0 0 0

55

RING COUNTER

A ring counter is constructed by connecting the outputs of the last flip-flop of the shift register to the

inputs of the first flip-flop. The circuit diagram of a 4-bit ring counter is shown in the figure below.

The outputs of the flip-flop A are connected to the inputs of flip-flop B. The outputs of the flip-flop

B are connected to the inputs of flip-flop C. The outputs of the flip-flop C are connected to the inputs

of flip-flop D. The outputs of the flip-flop D are fed back and connected to the inputs of flip-flop A.

The clock pulse is connected to all the flip-flops directly. When the clock pulse is allowed to run, the

outputs of all the flip-flops will never change, as long as the low output of flip-flop D is connected to

the input of A.

Suppose that, by some external means, flip-flop A is made high, and all other flip-flops are low, and

then the clock is allowed to run. During the first clock pulse, the 1 in flip-flop A will shift into flip-

flop B and flip-flop A will be reset (0), since the 0 in flip-flop D will shift into flip-flop A. All other

flip-flops will still contain 0s. The second clock pulse will shift the 1 in flip-flop B into flip-flop C,

while B resets. The third clock pulse will shift the 1 in flip-flop C into flip-flop D, and so on. Thus,

the single 1 will shift down the register, traveling from one flip-flop to the next flip-flop for each

clock pulse. When it reaches flip-flop D, the next clock will shift it into flip-flop A by means of the

feedback connection. This configuration is also referred to as a circulating register. The following

table shows the state of the ring counter for each clock pulse.

CLK A B C D

0 0 0 0 0

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

5 1 0 0 0

SHIFT COUNTER (JOHNSON COUNTER)

The four JK flip-flops are connected in a standard shift register configuration. In addition, the

outputs of the last flip-flop are crossed over and then connected back to the inputs of the first flip-

flop. Specifically, D is connected to the K input of A, and D’ is connected to the J input of A. The

circuit diagram of a 4-bit shift counter is shown in the figure below.

56

Now assume that all flip-flops are in the reset condition and clock is allowed to run. Since D’ is high

and D is low, a 1 is set in flip-flop A during the first clock cycle. At the same time, B, C, and D

remain low since their J inputs are low and their K inputs are high.

During the second cycle of the clock, A remains high since D’ is still high and D is still low. At the

same time, B is set high since A is now high and A’ is low; C and D remain low. During the third

clock, A and B remain high, C is set high since B is now high and D remains low. During the fourth

clock cycle, A, B, and C remain high and D becomes high.

During the fifth clock period, D’ is low and D is high; therefore, A is reset to low state, and B and C

remain high. During the sixth clock cycle, A remains low, B is reset low (since A is now low and A’

is high), and C and D remain high. During the seventh clock cycle, A and B remain low, C is reset

low; D remains high. The eighth clock returns the counter to the initial starting point since D is reset

low while A, B and C remain low. Thus, this shift register with inverse feedback has progressed

through a complete cycle of counts in eight clock cycles. The shift counter is also referred to as

Johnson Counter. The functional table of the shift counter is given below:

CLK A B C D

0 0 0 0 0

1 1 0 0 0

2 1 1 0 0

3 1 1 1 0

4 1 1 1 1

5 0 1 1 1

6 0 0 1 1

7 0 0 0 1

8 0 0 0 0

COUNTERS

A register that goes through a prescribed sequence of states upon the application of clock pulses is

called a counter. The sequence of states may follow the binary number sequence or any other

sequence of states. A counter that follows the binary number sequence is called a binary counter. An

n-bit counter consists of n flip-flops and can count in binary from 0 through 2n – 1. There are

basically two types of counters – asynchronous and synchronous counters.

Asynchronous Counter:

In an asynchronous counter, each flip-flop is triggered by the previous flip-flop. In other words, the

output of a flip-flop is used as the clock input for the next flip-flop. Such a counter is also called a

ripple counter or a serial counter. A 3-bit binary ripple counter can be constructed using three JK flip-

flops as shown in the figure below:

57

The system clock drives flip-flop A. The output of flip-flop A drives flip-flop B, and the output of

flip-flop B drives flip-flop C. All the J and K inputs are connected to +Vcc. This means each flip-flop

will change state with a negative transition of the clock input.

CLK C B A

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

8 0 0 0

To understand the operation of this counter, refer to the functional table given above. The count starts

with 000 and increments by one with each clock pulse input. After the count 111, the counter goes

back to 000 to repeat the count. The least significant bit A is complemented with each clock pulse

input. Every time A goes from 1 to 0, it complements B. Every time B goes from 1 to 0, it

complements C, and so on for any other higher order bits of a counter. During the first clock pulse,

flip-flop A changes from 0 to 1. This is a positive change and hence flip-flops B and C will not

change state. The contents of the counter at this stage is CBA=001. During the second clock pulse,

flip-flop A changes from 1 to 0. This negative transition drives flip-flop B and hence it changes from

0 to 1. This positive transition in B does not affect flip-flop C and hence the contents of the counter is

CBA= 010. During the third clock pulse, flip-flop A changes from 0 to 1. This positive transition

does not affect the other flip-flops. Hence the state of the counter changes to CBA = 011. The counter

advances one count for each clock pulse until it reaches the count 111. At this point it resets back to

000 and begins the count cycle all over again.

A counter with three flip-flops is often referred to as a modulus-8 (or mod-8) counter since it counts

8 states. Similarly, a counter with four flip-flops is called a mod-16 counter, and so on. The modulus

of a counter is the total number of states through which the counter can progress.

Synchronous Counter:

Synchronous counters are different from ripple counters in that clock pulses are applied to all the

flip-flops directly. A common clock triggers all the flip-flops simultaneously. The decision whether a

flip-flop is to be complemented or not is determined from the values of the data inputs J and K at the

time of the clock pulse. If J = K = 0, the flip-flop does not change state. It J = K = 1, the flip-flop

toggles.

58

In a synchronous binary counter, the flip-flop in the least significant position is complemented with

every clock pulse. A flip-flop in any other position is complemented when all the bits in the lower

significant positions are equal to 1. The circuit diagram and the functional table of a 3-bit

synchronous counter is shown in the figure below.

CLK C B A

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

8 0 0 0

The clock inputs of all the flip-flops are connected to a common clock. The counter is enabled with

the count enable input (+Vcc). The first stage flip-flop A has its J and K inputs equal to 1. The J and

K inputs of other flip-flops are equal to 1 if all previous least significant stages are equal to 1 and the

count is enabled. The chain of AND gates generate the required logic for the J and K inputs in each

stage. For example, if the present state of the counter is CBA = 0011, the next count is 100. A is

always complemented. B is complemented because the present state of A = 1. C is complemented

because the present state of BA = 11. The counter can be extended to any number of stages, with

each stage having an additional flip-flop and an AND gate that gives and output of 1 if all previous

flip-flop outputs are 1.

59

UNIT-5

CENTRAL PROCESSING UNIT

General Register Organization:

When a large number of registers are included in the CPU, it is most efficient to connect them

through a common bus system. The registers communicate with each other not only for direct data

transfers, but also while performing various micro-operations. Hence, it is necessary to provide a

common unit that can perform all the arithmetic, logic and shift micro-operations in the processor.

The block diagram of a bus organization for seven CPU registers is shown in the figure below.

The output of each register is connected to two multiplexers (MUX) to form the two buses A & B.

The selection lines in each multiplexer select one register or the input data for the particular bus. The

A and B buses form the inputs to a common ALU. The operation selected in the ALU determines the

arithmetic or logic micro-operation that is to be performed. The result of the micro-operation is

available for output and also goes into the inputs of the registers. The register that receives the

information from the output bus is selected by a decoder. The decoder activates one of the register

load inputs, thus providing a transfer both between the data in the output bus and the inputs of the

selected destination register.

60

The control unit that operates the CPU bus system directs the information flow through the registers

and ALU by selecting the various components in the systems.

R1 ← R2 - R3

1. MUX A selection (SELA): to place the content of R2 into bus A

2. MUX B selection (SELB): to place the content of R3 into bus B

3. ALU operation selection (OPR): to provide the arithmetic addition (A - B)

4. Decoder destination selection (SELD): to transfer the content of the output bus into R1

The four control selection variables are generated in the control unit and must be available at the

beginning of a clock cycle. The data from the two source registers propagate through the gates in the

multiplexer and the ALU, to the output bus, and into the inputs of the destination register, all during

the clock cycle interval.

Control Word:

There are 14 binary selection inputs in the units, and their combined value specifies a control word. It

consists of four fields. Three fields contain three bits each, and one field has five bits. The three bits

of SELA select a source register for the A input of the ALU. The three bits of SELB select a source

register for the B input of the ALU. The three bits of SELD select a destination register using the

decoder and its seven load outputs. The five bits of OPR select one of the operations in the ALU. The

14-bit control word when applied to the selection inputs specify a particular micro-operation.

Example of Micro-operation:

The control word of the micro-operation R1 ← R2 – R3 is given in the table below.

Field SELA SELB SELD OPR

Symbol R2 R3 R1 SUB

Control Word 010 011 001 00101

Stack Organization

A useful feature that is included in the CPU of most computers is a stack or last-in first out (LIFO)

memory. A stack is a storage device that stores information in such a manner that the item stored last

is the first item retrieved.

The register that holds the address for the stack is called a Stack Pointer (SP) because its value

always points at the top item in the stack.

PUSH (insert) and POP (delete) are the two operations that can be carried out on a stack.

61

Register Stack: A stack can be placed in a portion of a large memory as it can be organized as a

collection of a finite number of memory words as register.

In a 64- word stack (shown above), the stack pointer contains 6 bits because 26 = 64.

The one bit register FULL is set to 1 when the stack is full, and the one-bit register EMPTY is set to

1 when the stack is empty. DR is the data register that holds the binary data to be written into or read

out of the stack.

Initially, SP is set to 0, EMPTY is set to 1, FULL = 0, so that SP points to the word at address 0 and

the stack is masked empty and not full.

PUSH SP ← SP + 1 increment stack pointer

 M [SP] ← DR write item on top of the Stack

 If (SP = 0) then (FULL←1) check if stack is full

 EMPTY ← 0 mask the stack not empty

POP DR ← [SP] read item from the top of stack

 SP ← SP –1 decrement stack pointer

 If (SP = 0) then (EMPTY ←1) check if stack is empty

 FULL ← 0 mark the stack not full.

Memory Stack:

A stack can exist as a stand-alone unit or can be executed in a random-access memory attached to a

CPU. The implementation of a stack in the CPU is done by assigning a portion of memory. A portion

of memory is assigned to a stack operation and a processor register is used as a stack pointer to

execute stack in the CPU. Figure below shows a portion of computer memory partitioned into three

segments - program, data, and stack. The address of the next instruction in the program is located by

the program counter PC while an array of data is pointed by address register AR. The top of the stack

is located by the stack pointer SP. The three registers are connected to a common address bus. PC is

used during the fetch phase to read an instruction. AR is used during the execute phase to read an

operand. SP is used to push or pop items into or from the stack.

62

 Memory Unit Address

Instruction Formats

The most common fields found in an instruction format are:

1. An operation code field that specifies the operation to be performed

2. An address field that designates a memory address or a processor register.

3. A mode field that specifies the way the operand or the effective address is determined.

Computers may have instructions of several different lengths containing varying number of

addresses. The number of address fields in the instruction format of a computer depends on the

internal organization of its registers. Most computers fall into one of three types of CPU organization.

1. Single Accumulator organization ADD X AC ← AC + M [X]

2. General Register Organization ADD R1, R2, R3 R ← R2 + R3

3. Stack Organization PUSH X

Three address Instructions

Computers with three address instruction formats can use each address field to specify either a

processor register or a memory operand.

ADD R1, A, B R1 ← M [A] + M [B]

ADD R2, C, D R2 ← M [C] + M [D]

MUL X, R1, R2 M [X] ← R1 * R2

The advantage of the three address formats is that it results in a short program when evaluating

arithmetic expression. The disadvantage is that the binary-coded instructions require too many bits to

specify three addresses.

63

Two Address Instructions

Each address field can specify either a processor register or a memory word.

MOV R1, A R1 ← M [A]

ADD R1, B R1 ← R1 + M [B]

MOV R2, C R2 ← M [C]

ADD R2, D R2 ← R2 + M [D]

MUL R1, R2 R1 ← R1 * R2

MOV X, R1 M [X] ← R1

One Address instructions

It used an implied accumulator (AC) register for all data manipulations. The second operand is

specified in the instruction.

LOAD A AC ← M [A]

ADD B AC ← AC + M [B]

STORE T M [T] ← AC

LOAD C AC ← M [C]

ADD D AC ← AC + M (D)

MUL T AC ← AC * M (T)

STORE X M [X]← AC

Zero – Address Instructions

A stack organized computer does not use an address field for the instruction ADD and MUL. The

PUSH and POP instructions, however, need an address field to specify the operand that

communicates with the stack (TOS ← top of the stack).

PUSH A TOS ← A

PUSH B TOS ← B

ADD TOS ← (A + B)

PUSH C TOS ← C

PUSH D TOS ← D

ADD TOS ← (C + D)

MUL TOS ← (C + D) * (A + B)

POP X M [X] ← TOS

Addressing Modes

An addressing mode is a method of fetching operands for various operations. Addressing modes

available in most of the processors are discussed below.

Implied Mode: This mode specifies the operands implicitly in the definition of the instruction. For

example, the instruction ‘‘Complement Accumulator’’ is an implied mode instruction because the

operand in the accumulator register is implied in the definition of the instruction. In fact, all register

references instructions that use an accumulator are implied mode instructions. All zero-address

introductions are also implied mode instructions.

64

Immediate Mode: The operand is specified in the instruction itself in this mode i.e. the immediate

mode instruction has an operand field rather than an address field. The actual operand to be used in

conjunction with the operation specified in the instruction is contained in the operand field.

Register Mode: In this mode, the operands are in registers that reside within the CPU. The register

required is chosen from a register field in the instruction.

Register Indirect Mode: In this mode, the instruction specifies a register in the CPU that contains

the address of the operand and not the operand itself. Usage of register indirect mode instruction

necessitates the placing of memory address of the operand in the processor register with a previous

instruction.

Autoincrement or Autodecrement Mode: After execution of every instruction from the data in

memory it is necessary to increment or decrement the register. This is done by using the increment or

decrement instruction. Given upon its sheer necessity some computers use special mode that

increments or decrements the content of the registers automatically.

Direct Address Mode: In this mode, the operand resides in memory and its address is given directly

by the address field of the instruction such that the affective address is equal to the address part of the

instruction.

Indirect Address Mode: In this mode, the address field specifies the address where the effective

address is stored in memory. The instruction from memory is fetched through control to read its

address part to access memory again to read the effective address. A few addressing modes require

that the address field of the instruction be added to the content of a specific register in the CPU. The

effective address in these modes is obtained from the following equation:

Effective address = address part of instruction + content of CPU register

The CPU Register used in the computation may be the Program Counter, Index Register or a Base

Register.

Relative Address Mode: This mode is applied often with branch type instructions where the branch

address position is relative to the address of the instruction word itself. As such in the mode, the

content of the program counter is added to the address part of the instruction in order to obtain the

effective address whose position in memory is relative to the address of the next instruction.

Indexed Addressing Mode: In this mode the effective address is obtained by adding the content of

an index register to the address part of the instruction. The index register is a special CPU register

that contains an index value and can be incremented after its value is used to access the memory.

Base Register Addressing Mode: In this mode the affective address is obtained by adding the

content of a base register to the part of the instruction like that of the indexed addressing mode

though the register here is a base register and not a index register.

65

Data Transfer and Manipulation

Computer provides an extensive set of instructions to give the user the flexibility to carryout various

computational tasks. Most computer instructions can be classified into three categories.

1. Data transfer instructions

2. Data manipulation instructions

3. Program control instructions

Data transfer instruction cause transfer of data from one location to another without changing the

binary information content. Data manipulation instructions are those that perform arithmetic logic,

and shift operations. Program control instructions provide decision-making capabilities and change

the path taken by the program when executed in the computer.

Data Transfer Instructions

Data transfer instruction move data from one place in the computer to another without changing the

data content. The most common transfers are between memory and processes registers, between

processor registers and input or output, and between processor register themselves.

The “load” instruction represents a transfer from memory to a processor register, usually an

“accumulator” where as the store instruction designates a transfer from a processor register into

memory. The move instruction is employed in computers with multiple CPU registers to designate a

transfer from one register to another. It has also been used for data transfers between CPU registers

and memory or between two memory words. Swapping of information between to registers of a

register and memory word is accomplished by using the exchange instruction. The input and output

instructions cause transfer of data among processor registers and input or output terminals. The push

and pop instructions take care of transfer of data between processor registers and a memory stack.

The data transfer instructions are shown in the following table.

Name Mnemonic

Load LD

Store ST

Move MOV

Exchange XCH

Input IN

Output OUT

Push PUSH

Pop POP

Data Manipulation Instructions

These instructions perform operations on data and provide the computational capabilities for the

computer. The data manipulation instructions in a typical computer are usually divided into three

basic types.

1. Arithmetic Instructions

2. Logical bit manipulation Instructions

3. Shift Instructions

66

Arithmetic Instructions

The four basic arithmetic operations are addition, subtraction, multiplication, and division. Most of

the computers carry instructions for all four operations. The increment instruction adds 1 to the value

stored in a register or memory word. The decrement instruction subtracts 1 from the value stored in a

register or memory word. The instruction “add with carry” performs the addition on two operands

plus the value of the carry from the previous computation. Similarly, the “subtract with borrow”

instruction subtracts two words and a borrow which may have resulted from a previous subtract

operation. The negate instruction forms the 2’s complement of a number, effectively reversing the

sign of an integer when represented in the signed-2’s complement form. The arithmetic instructions

are shown in the following table.

Name Mnemonic

Increment INC

Decrement DEC

Add Add

Subtract Sub

Multiply MUL

Divide DIV

Add with Carry ADDC

Subtract with Borrow SUBB

Negate (2’s Complement) NEG

Logical and Bit Manipulation Instructions

Some typical logical and bit manipulation instructions are listed in the following table. The clear

instruction causes the specified operand to be replaced by 0’s. The complement instruction produces

the l’s complement by inverting all the bits of the operand. The AND, OR, and XOR instructions

produce the corresponding logical operations on each bit of the operands separately. Although they

perform Boolean operations, when used in computer instructions, the logical instructions should be

considered as performing bit manipulation operations. There are three bit manipulation operations

possible: a selected bit can be cleared to 0, or can be set to 1, or can be complemented.

Name Mnemonic

Clear CLR

Complement COM

AND AND

OR OR

Exclusive-Or XOR

Clear Carry CLRC

Set Carry SETC

Complement Carry COMC

Enable Interrupt EI

Disable Interrupt DI

Shift Instructions

Instructions to shift the content of an operand are quite useful and are often provided in several

variations. Shifts are operations in which the bits of a word are moved to the left or right. The bit

shifted in at the end of the word determines the type of shift used. Shift instructions may specify

either logical shifts, arithmetic shifts, or rotate-type shifts.

67

Four types of shift instructions are listed below in the table. The logical shift inserts 0 to the end bit

position. The end position is the leftmost bit for shift right and the rightmost bit position for the shift

left. Arithmetic shifts are used in conformity with the rules for signed-2’s complement numbers. The

arithmetic shift-right instruction must preserve the sign bit in the leftmost position. The sign bit is

shifted to the right together with the rest of the number, but the sign bit itself remains unaltered. This

is a shift-right operation wherein the end bit remains unchanged the same. The arithmetic shift-left

instruction inserts 0 to the end position and is identical to the logical shift-left instruction.

Name Mnemonic

Logical shift right SHR

Logical shift left SHL

Arithmetic shift right SHRA

Arithmetic shift left SHLA

Rotate right ROR

Rotate left ROL

Rotate right through carry RORC

Rotate left through carry ROLC

A circular shift is produced by the rotate instructions. The rotate through carry instruction treats a

carry bit as an extension of the register whose word is being rotated. Thus a rotate-left through carry

instruction transfers the carry bit into the rightmost bit position of the register, transfers the leftmost

bit position into the carry and at the same time, and shifts the entire register to the left.

Program Control Instructions:

The conditions for altering the content of the program counter, are specified by program control

instruction, and the conditions for data-processing operations are specify by data transfer and

manipulation instructions. As a result of execution of a program control instruction, a change in the

value of program counter occurs, which causes a break in the sequence of instruction execution.

Some typical program control instructions are listed in Table below.

Name Mnemonic

Branch BR

Jump JMP

Skip SKP

Call CALL

Return RET

Compare CMP

Test TST

The branch and jump instructions are identical in their use but sometimes they are used to denote

different addressing modes. The branch is usually a one-address instruction. Branch and jump

instructions may be conditional or unconditional. An unconditional branch instruction, as a name

denotes, causes a branch to the specified address without any conditions. On the contrary the

conditional branch instruction specifies a condition such as branch if positive or branch if zero. If the

condition is met, the program counter is loaded with the branch address and the next instruction is

taken from this address. If the condition is not met, the program counter remains unaltered and the

next instruction is taken from the next location in sequence.

68

The skip instruction does not require an address field and is, therefore, a zero-address instruction. A

conditional skip instruction will skip the next instruction if the condition is met. The call and return

instructions are used in conjunction with subroutines. The compare instruction performs a subtraction

between two operands, but the result of the operation is not retained.

Status Bit Conditions

It is sometimes convenient to supplement the ALU circuit in the CPU with a status register where

status bit conditions can be stored for further analysis. Status bits are also called condition-code bits

or flag bits. The following figure shows the block diagram of an 8-bit ALU with a 4-bit status

register.

The four status bits are symbolized by C. S, Z, and V. The bits are set or cleared as a result of an

operation performed in the ALU.

1. Bit C (carry) is set to 1 if the end carry C8 is 1. It is cleared to 0 if the carry is 0.

2. Bit S (sign) is set to 1 if the highest-order bit F, is 1. It is set to 0 if the bit is 0.

3. Bit Z (zero) is set to 1 if the output of the ALU contains all O's. !t is cleared to 0 otherwise. In

other words, Z = 1 if the output is zero and Z = 0 if the output is not zero.

4. Bit V (overflow) is set to 1 if the exclusive-OR of the last two carries is equal to 1, and cleared to 0

otherwise. This is the condition for an overflow when negative numbers are in 2’s complement.

Conditional Branch Instructions

The commonly used branch instructions are listed in the table below.

Mnemonic Branch Condition Tested Condition

BZ Branch if Zero Z = L

BNZ Branch if Not Zero Z = O

BC Branch if Carry C = L

BNC Branch if No Carry C = O

BP Branch if Plus S = 0

BM Branch if Minus S = I

BY Branch if Overflow V = L

BNV Branch if No Overflow V = O

69

Each mnemonic is constructed with the letter B (for branch) and an abbreviation of the condition

name. When the opposite condition state is used, the letter N (for No) is inserted to define the 0 state.

Thus, BC is Branch on Carry, and BNC is Branch on No Carry. If the stated condition is met, the

address specified by the instruction receives program control. If not, control continues with the

instruction that follows. The conditional instructions can be associated also with the jump, skip, call,

or return type of program control instructions. The Zero status bit is employed for testing if the result

of an ALU operation is equal to zero or not. The carry bit is employed to check if there is a carry out

of the most significant bit position of the ALU. The sign bit reflects the state of the most significant

bit of the output from the ALU. S = 0 denotes a positive sign and S = 1, a negative sign. Therefore, a

branch on plus checks for a sign bit of 0 and a branch on minus checks for a sign bit of 1.

Subroutine Call and Return

A subroutine is a self-contained sequence of instructions that performs a given computational task.

During the execution of a program, a subroutine may be called to perform its function many times at

various points in the main program. Each time a subroutine is called, a branch is executed to the

beginning of the subroutine to start executing its set of instructions. After the subroutine has been

executed, a branch is made back to the main program. The instruction that transfers program control

to a subroutine is known by different names. The most common names used are call subroutine, jump

to subroutine, branch to subroutine, or branch and save address. A call subroutine instruction consists

of an operation code together with an address that specifies the beginning of the subroutine. The

instruction is executed by performing two operations: (1) the address of the next instruction available

in the program counter (the return address) is stored in a temporary location so the subroutine knows

where to return, and (2) control is transferred to the beginning of the subroutine. The last instruction

of every subroutine, commonly called return from subroutine, transfers the return address from the

temporary location into the program counter. This results in a transfer of program control to the

instruction whose address was originally stored in the temporary location.

The most efficient way is to store the return address in a memory stack. The advantage of using a

stack for the return address is that when a succession of subroutines is called, the sequential return

addresses can be pushed into the stack. The return from subroutine instruction causes the stack to pop

and the contents of the top of the stack are transferred to the program counter. In this way, the return

is always to the program that last called a subroutine. A subroutine call is implemented with the

following microoperations:

SP ← SP - 1 Decrement stack pointer

M [SP] ← PC Push content of PC onto the stack

PC ← effective address Transfer control to the subroutine

If another subroutine is called by the current subroutine, the new return address is pushed into the

stack, and so on. The instruction that returns from the last subroutine is implemented by the

microoperations:

PC ← M [SP] Pop stack and transfer to PC

SP ← SP + 1 Increment stack pointer

By using a subroutine stack, all return addresses are automatically stored by the hardware in one unit.

A recursive subroutine is a subroutine that calls itself.

70

Program Interrupt

Program interrupt refers to the transfer of program control from a currently running program to

another service program as a result of an external or internal generated request. Control returns to the

original program after the service program is executed.

The interrupt procedure is, in principle, quite similar to a subroutine call except for three variations:

(1) The interrupt is usually initiated by an internal or external signal rather than from the execution of

an instruction (except for software interrupt as explained later); (2) the address of the interrupt

service program is determined by the hardware rather than from the address field of an instruction;

and (3) an interrupt procedure usually stores all the information necessary to define the state of the

CPU rather than storing only the program counter. These three procedural concepts are clarified

further below.

After a program has been interrupted and the service routine been executed, the CPU must return to

exactly the same state that it was when the interrupt occurred. Only if this happens will the

interrupted program be able to resume exactly as if nothing had happened.

Types of Interrupts

There are three major types of interrupts that cause a break in the normal execution of a program.

They can be classified as:

1. External interrupts

2. Internal interrupts

3. Software interrupts

External interrupts come from input-output (l/O) devices, from a timing device, from a circuit

monitoring the power supply, or from any other external source. Examples that cause external

interrupts are l/O device requesting transfer of data, l/O device finished transfer of data, elapsed time

of an event, or power failure.

Internal interrupts arise from illegal or erroneous use of an instruction or data. Internal interrupts are

also called traps. Examples of interrupts caused by internal error conditions are register overflow,

attempt to divide by zero, an invalid operation code, stack overflow, and protection violation.

External and internal interrupts are initiated from signals that occur in the hardware of the CPU. A

software interrupt is initiated by executing an instruction. Software interrupt is a special call

instruction that behaves like an interrupt rather than a subroutine call. It can be used by the

programmer to initiate an interrupt procedure at any desired point in the program.

Reduced Instruction Set Computer (RISC)

A computer with a large number of instructions is classified as a Complex Instruction Set Computer,

abbreviated as CISC. In the early 1980s, a number of computer designers recommended that

computers use fewer instructions with simple constructs so that they can be executed much faster

within the CPU without having to use memory as often. This type of computer is classified as a

Reduced Instruction Set Computer or RISC.

71

Characteristics of CISC architecture:

The essential goal of a CISC architecture is to attempt to provide a single machine instruction for

each statement that is written in a high-level language. Examples of CISC architectures are the

Digital Equipment Corporation VAX computer and the IBM 370 computer.

The major characteristics of CISC architecture are listed below.

1. A large number of instructions - typically from 100 to 250 instructions.

2. Some instructions that perform specialized tasks and are used infrequently.

3. A large variety of addressing modes – typically from 5 to 20 different modes.

4. Variable length instruction formats

5. Instructions that manipulate operands in memory.

Characteristics of RISC Architecture:

The concept of RISC arithmetic involves an attempt to reduce execution time by simplifying the

instruction set of the computer.

The major characteristics of a RISC processer are:

1. Relatively few instructions

2. Relatively few addressing modes

3. Memory access limited to load & store instruction

4. All operations are done within the registers of the CPU.

5. Fixed-length, easily decoded instruction formats

6. Single-cycle instruction execution

7. Hardwired rather than micro-programmed control.

There are three solutions for every problem to lead a happy life:

Accept it, change it, or leave it.

If you can’t accept it, change it. If you can’t change it, leave it.

You will certainly enjoy your life

